Commit Graph
Select branches
Hide Pull Requests
0.5.x
0.6.x
attn_update
bits_and_tpu
cleanup_xla_model_fixes
clip_laion2b
convnext_and_copyright
convnextv2
dataset_info
edgenext_csp_and_more
efficientnet_attn
eva
fix_tests
fix_window_trace
fixes-syncbn_pretrain_cfg_resolve
fixes_bce_regnet
focalnet_and_swin_refactor
freeze_norm_revisit
gh-pages
hf_hub_revisit
levit_efficientformer_redux
main
maxxvit_hub
more_attn
more_datasets
more_vit
multi-weight
multi-weight_effnet_convnext
norm_mlp_classifier
norm_norm_norm
parse_kwargs
parse_kwargs2
perceiver
refactor-imports
scaling_vit
script_cleanup
swin_v2
update-test-pytorch
vit_and_bit_test_fixes
vit_relpos_refactor
xsepconv
#1
#1007
#101
#1012
#1014
#1034
#1037
#105
#1055
#1056
#1056
#1058
#1061
#1063
#1063
#1069
#1083
#1091
#1094
#1105
#1112
#1113
#115
#1150
#117
#1187
#1190
#1194
#12
#1208
#1210
#1210
#1212
#1213
#1213
#122
#1222
#1222
#1229
#123
#1230
#1233
#1239
#1245
#1249
#125
#1251
#1253
#1253
#1256
#1259
#1265
#1266
#1270
#1271
#1271
#1273
#1274
#1276
#1277
#1294
#13
#1317
#132
#1322
#1327
#1330
#1330
#1336
#1340
#1345
#1349
#1351
#1354
#136
#1363
#1365
#137
#1381
#1383
#1385
#140
#141
#1414
#1415
#142
#1420
#143
#1439
#1439
#145
#146
#1467
#1471
#1473
#1476
#1479
#148
#1483
#1493
#1494
#1498
#150
#1500
#1502
#1520
#1522
#1525
#1527
#1532
#1538
#154
#1545
#1547
#155
#1552
#1553
#1553
#156
#1562
#1564
#1565
#1575
#1578
#1578
#1581
#1582
#1583
#1586
#1590
#1590
#1592
#1593
#16
#1606
#1612
#1614
#1617
#1617
#1621
#1622
#1624
#1627
#1628
#1628
#163
#1630
#1633
#1641
#1643
#1643
#1645
#1647
#1647
#1649
#1654
#1654
#1655
#1659
#1659
#1662
#1673
#1674
#1677
#1679
#1679
#1680
#1683
#1685
#1687
#1688
#1688
#175
#179
#183
#19
#191
#195
#199
#2
#208
#212
#212
#213
#213
#214
#216
#218
#227
#228
#23
#233
#237
#24
#240
#240
#244
#250
#255
#256
#263
#268
#282
#284
#286
#29
#290
#290
#297
#30
#300
#302
#31
#315
#32
#322
#323
#33
#334
#335
#35
#352
#367
#382
#389
#401
#413
#418
#419
#421
#425
#427
#429
#434
#437
#440
#447
#450
#459
#475
#489
#494
#497
#501
#502
#510
#52
#525
#528
#53
#533
#537
#542
#548
#550
#554
#555
#556
#561
#571
#580
#581
#595
#6
#603
#603
#609
#612
#613
#62
#625
#626
#636
#637
#645
#647
#65
#651
#652
#653
#659
#659
#66
#660
#668
#669
#679
#681
#685
#693
#7
#702
#714
#729
#731
#738
#74
#746
#747
#750
#768
#768
#771
#772
#800
#801
#804
#804
#805
#808
#812
#813
#816
#817
#82
#821
#828
#83
#841
#842
#853
#853
#858
#87
#874
#875
#876
#88
#880
#882
#891
#898
#910
#913
#914
#915
#933
#94
#95
#964
#967
#968
#986
#989
#99
#993
v0.1-attn-weights
v0.1-cadene
v0.1-coat-weights
v0.1-dnf-weights
v0.1-effv2-weights
v0.1-ger-weights
v0.1-hrnet
v0.1-mvit-weights
v0.1-pit-weights
v0.1-regnet
v0.1-repvgg-weights
v0.1-res2net
v0.1-resnest
v0.1-rexnet
v0.1-rs-weights
v0.1-rsb-weights
v0.1-selecsls
v0.1-tpu-weights
v0.1-tresnet
v0.1-vitjx
v0.1-vt3p-weights
v0.1-weights
v0.1-weights-maxx
v0.1-weights-morevit
v0.1-weights-swinv2
v0.1.1
v0.2.1
v0.3.3
v0.3.4
v0.4.12
v0.4.5
v0.4.9
v0.5.4
v0.6.11
v0.6.12
v0.6.5
v0.6.7
v0.8.10dev0
v0.8.13dev0
v0.8.2dev0
v0.8.6dev0
Select branches
Hide Pull Requests
0.5.x
0.6.x
attn_update
bits_and_tpu
cleanup_xla_model_fixes
clip_laion2b
convnext_and_copyright
convnextv2
dataset_info
edgenext_csp_and_more
efficientnet_attn
eva
fix_tests
fix_window_trace
fixes-syncbn_pretrain_cfg_resolve
fixes_bce_regnet
focalnet_and_swin_refactor
freeze_norm_revisit
gh-pages
hf_hub_revisit
levit_efficientformer_redux
main
maxxvit_hub
more_attn
more_datasets
more_vit
multi-weight
multi-weight_effnet_convnext
norm_mlp_classifier
norm_norm_norm
parse_kwargs
parse_kwargs2
perceiver
refactor-imports
scaling_vit
script_cleanup
swin_v2
update-test-pytorch
vit_and_bit_test_fixes
vit_relpos_refactor
xsepconv
#1
#1007
#101
#1012
#1014
#1034
#1037
#105
#1055
#1056
#1056
#1058
#1061
#1063
#1063
#1069
#1083
#1091
#1094
#1105
#1112
#1113
#115
#1150
#117
#1187
#1190
#1194
#12
#1208
#1210
#1210
#1212
#1213
#1213
#122
#1222
#1222
#1229
#123
#1230
#1233
#1239
#1245
#1249
#125
#1251
#1253
#1253
#1256
#1259
#1265
#1266
#1270
#1271
#1271
#1273
#1274
#1276
#1277
#1294
#13
#1317
#132
#1322
#1327
#1330
#1330
#1336
#1340
#1345
#1349
#1351
#1354
#136
#1363
#1365
#137
#1381
#1383
#1385
#140
#141
#1414
#1415
#142
#1420
#143
#1439
#1439
#145
#146
#1467
#1471
#1473
#1476
#1479
#148
#1483
#1493
#1494
#1498
#150
#1500
#1502
#1520
#1522
#1525
#1527
#1532
#1538
#154
#1545
#1547
#155
#1552
#1553
#1553
#156
#1562
#1564
#1565
#1575
#1578
#1578
#1581
#1582
#1583
#1586
#1590
#1590
#1592
#1593
#16
#1606
#1612
#1614
#1617
#1617
#1621
#1622
#1624
#1627
#1628
#1628
#163
#1630
#1633
#1641
#1643
#1643
#1645
#1647
#1647
#1649
#1654
#1654
#1655
#1659
#1659
#1662
#1673
#1674
#1677
#1679
#1679
#1680
#1683
#1685
#1687
#1688
#1688
#175
#179
#183
#19
#191
#195
#199
#2
#208
#212
#212
#213
#213
#214
#216
#218
#227
#228
#23
#233
#237
#24
#240
#240
#244
#250
#255
#256
#263
#268
#282
#284
#286
#29
#290
#290
#297
#30
#300
#302
#31
#315
#32
#322
#323
#33
#334
#335
#35
#352
#367
#382
#389
#401
#413
#418
#419
#421
#425
#427
#429
#434
#437
#440
#447
#450
#459
#475
#489
#494
#497
#501
#502
#510
#52
#525
#528
#53
#533
#537
#542
#548
#550
#554
#555
#556
#561
#571
#580
#581
#595
#6
#603
#603
#609
#612
#613
#62
#625
#626
#636
#637
#645
#647
#65
#651
#652
#653
#659
#659
#66
#660
#668
#669
#679
#681
#685
#693
#7
#702
#714
#729
#731
#738
#74
#746
#747
#750
#768
#768
#771
#772
#800
#801
#804
#804
#805
#808
#812
#813
#816
#817
#82
#821
#828
#83
#841
#842
#853
#853
#858
#87
#874
#875
#876
#88
#880
#882
#891
#898
#910
#913
#914
#915
#933
#94
#95
#964
#967
#968
#986
#989
#99
#993
v0.1-attn-weights
v0.1-cadene
v0.1-coat-weights
v0.1-dnf-weights
v0.1-effv2-weights
v0.1-ger-weights
v0.1-hrnet
v0.1-mvit-weights
v0.1-pit-weights
v0.1-regnet
v0.1-repvgg-weights
v0.1-res2net
v0.1-resnest
v0.1-rexnet
v0.1-rs-weights
v0.1-rsb-weights
v0.1-selecsls
v0.1-tpu-weights
v0.1-tresnet
v0.1-vitjx
v0.1-vt3p-weights
v0.1-weights
v0.1-weights-maxx
v0.1-weights-morevit
v0.1-weights-swinv2
v0.1.1
v0.2.1
v0.3.3
v0.3.4
v0.4.12
v0.4.5
v0.4.9
v0.5.4
v0.6.11
v0.6.12
v0.6.5
v0.6.7
v0.8.10dev0
v0.8.13dev0
v0.8.2dev0
v0.8.6dev0
-
0a853990e7
Add distributed sampler that maintains order of original dataset (for validation)
Ross Wightman 2019-04-22 17:34:24 -0700
-
8fbd62a169
Exclude batchnorm and bias params from weight_decay by default
Ross Wightman 2019-04-22 17:33:22 -0700
-
34cd76899f
Add Single-Path NAS pixel1 model
Ross Wightman 2019-04-22 12:43:45 -0700
-
419555be62
Update a few GenMobileNet comments
Ross Wightman 2019-04-21 16:14:23 -0700
-
1cf3ea0467
Ross Wightman 2019-04-21 16:49:00 -0700
-
bc264269c9
Morph mnasnet impl into a generic mobilenet that covers Mnasnet, MobileNetV1/V2, ChamNet, FBNet, and related * add an alternate RMSprop opt that applies eps like TF * add bn params for passing through alternates and changing defaults to TF style
Ross Wightman 2019-04-21 15:54:28 -0700
-
e9c7961efc
Fix pooling in mnasnet, more sensible default for AMP opt level
Ross Wightman 2019-04-17 18:06:37 -0700
-
996c77aa94
Prep mnasnet for pretrained models, use the select global pool, some comment mistakes
Ross Wightman 2019-04-15 16:58:40 -0700
-
6b4f9ba223
Add MNASNet A1, B1, and Small models as per the TF impl. Testing/training in progress...
Ross Wightman 2019-04-15 09:02:55 -0700
-
c88e80081d
Fix missing cfg key check
Ross Wightman 2019-04-15 08:45:31 -0700
-
073d31a076
Ross Wightman 2019-04-14 15:19:58 -0700
-
7ba78aaaeb
Ross Wightman 2019-04-14 15:14:37 -0700
-
e8e8bce335
Ross Wightman 2019-04-14 15:10:52 -0700
-
9e296dbffb
Add seresnet26_32x4d cfg and weights + interpolation str->PIL enum fn
Ross Wightman 2019-04-14 13:43:46 -0700
-
71afec86d3
Loader tweaks
Ross Wightman 2019-04-13 14:52:38 -0700
-
79f615639e
Add pretrained weights for seresnet18
Ross Wightman 2019-04-13 14:52:21 -0700
-
8a33a6c90a
Add checkpoint clean script, add link to pretrained resnext50 weights
Ross Wightman 2019-04-13 14:15:35 -0700
-
6e9697eb9c
Fix small bug in seresnet input size and eval transform handling of img size
Ross Wightman 2019-04-13 10:06:43 -0700
-
db1fe34d0c
Update a few comment, add some references
Ross Wightman 2019-04-12 23:16:49 -0700
-
0562b91c38
Add per model crop pct, interpolation defaults, tie it all together * create one resolve fn to pull together model defaults + cmd line args * update attribution comments in some models * test update train/validation/inference scripts
Ross Wightman 2019-04-12 22:49:35 -0700
-
c328b155e9
Random erasing crash fix and args pass through
Ross Wightman 2019-04-11 22:06:43 -0700
-
9c3859fb9c
Uniform pretrained model handling. * All models have 'default_cfgs' dict * load/resume/pretrained helpers factored out * pretrained load operates on state_dict based on default_cfg * test all models in validate * schedule, optim factor factored out * test time pool wrapper applied based on default_cfg
Ross Wightman 2019-04-11 21:32:16 -0700
-
63e677d03b
Merge branch 'master' of github.com:rwightman/pytorch-models
Ross Wightman 2019-04-10 14:55:54 -0700
-
0bc50e84f8
Lots of refactoring and cleanup. * Move 'test time pool' to Module that can be used by any model, remove from DPN * Remove ResNext model file and combine with ResNet * Remove fbresnet200 as it was an old conversion and pretrained performance not worth param count * Cleanup adaptive avgmax pooling and add back conctat variant * Factor out checkpoint load fn
Ross Wightman 2019-04-10 14:12:28 -0700
-
f1cd1a5ce3
Cleanup CheckpointSaver, add support for increasing or decreasing metric, switch to prec1 metric in train loop
Ross Wightman 2019-04-07 10:22:55 -0700
-
c0e6e5f3db
Add common model interface to pnasnet and xception, update factory
Ross Wightman 2019-04-06 13:59:15 -0700
-
f2029dfb65
Add smooth loss
Ross Wightman 2019-04-05 20:50:26 -0700
-
b0158a593e
Fix distributed train script
Ross Wightman 2019-04-05 20:49:58 -0700
-
183d8e4aef
Xception model working
Ross Wightman 2019-04-05 12:09:25 -0700
-
1e23727f2f
Update inference script for new loader style
Ross Wightman 2019-04-05 11:58:16 -0700
-
58571e992e
Change block avgpool in senets to mean for performance issues with NVIDIA and AMP especially
Ross Wightman 2019-04-05 10:53:13 -0700
-
5180f94c7e
Distributed (multi-process) train, multi-gpu single process train, and NVIDIA AMP support
Ross Wightman 2019-04-05 10:51:39 -0700
-
6f9a0c8ef2
Merge branch 'master' of github.com:rwightman/pytorch-models
Ross Wightman 2019-04-01 11:07:05 -0700
-
5cb1a35c6b
Fixup Resnext, remove alternate shortcut types
Ross Wightman 2019-04-01 11:03:37 -0700
-
d87824bd65
Merge branch 'master' of github.com:rwightman/pytorch-models
Ross Wightman 2019-03-17 09:57:36 -0700
-
45cde6f0c7
Improve creation of data pipeline with prefetch enabled vs disabled, fixup inception_res_v2 and dpn models
Ross Wightman 2019-03-11 22:17:42 -0700
-
321435e6b4
Update resnext init
Ross Wightman 2019-03-10 14:24:39 -0700
-
2295cf56c2
Add some Nvidia performance enhancements (prefetch loader, fast collate), and refactor some of training and model fact/transforms
Ross Wightman 2019-03-10 14:23:16 -0700
-
9d927a389a
Add adabound, random erasing
Ross Wightman 2019-03-01 22:03:42 -0800
-
1577c52976
Resnext added, changes to bring it and seresnet in line with rest of models
Ross Wightman 2019-03-01 15:29:02 -0800
-
e0cfeb7d8e
Add some models, remove a model, tweak some models
Ross Wightman 2019-03-01 13:08:35 -0800
-
31055466fc
Fixup validate/inference script args, fix senet init for better test accuracy
Ross Wightman 2019-02-22 14:07:50 -0800
-
b1a5a71151
Update schedulers
Ross Wightman 2019-02-17 12:50:15 -0800
-
b5255960d9
Tweaking tanh scheduler, senet weight init (for BN), transform defaults
Ross Wightman 2019-02-13 23:11:09 -0800
-
48360625f2
Cycle limit on tanh sched
Ross Wightman 2019-02-08 21:47:27 -0800
-
824f42e75e
Forgot to include Tanh scheduler
Ross Wightman 2019-02-08 21:14:47 -0800
-
a336e5bff3
Minor updates
Ross Wightman 2019-02-08 20:56:24 -0800
-
cf0c280e1b
Cleanup tranforms, add custom schedulers, tweak senet34 model
Ross Wightman 2019-02-06 20:19:11 -0800
-
c57717d325
Fix tta train bug, improve logging
Ross Wightman 2019-02-02 10:17:04 -0800
-
72b4d162a2
Increase training performance
Ross Wightman 2019-02-01 22:48:31 -0800
-
5855b07ae0
Initial commit, puting some ol pieces together
Ross Wightman 2019-02-01 21:48:56 -0800