|
|
|
@ -25,6 +25,7 @@ class TanhLRScheduler(Scheduler):
|
|
|
|
|
decay_rate: float = 1.,
|
|
|
|
|
warmup_updates=0,
|
|
|
|
|
warmup_lr_init=0,
|
|
|
|
|
cycle_limit=0,
|
|
|
|
|
initialize=True) -> None:
|
|
|
|
|
super().__init__(optimizer, param_group_field="lr", initialize=initialize)
|
|
|
|
|
|
|
|
|
@ -36,7 +37,7 @@ class TanhLRScheduler(Scheduler):
|
|
|
|
|
self.t_mul = t_mul
|
|
|
|
|
self.lr_min = lr_min
|
|
|
|
|
self.decay_rate = decay_rate
|
|
|
|
|
self.cycle_limit = 0
|
|
|
|
|
self.cycle_limit = cycle_limit
|
|
|
|
|
self.warmup_updates = warmup_updates
|
|
|
|
|
self.warmup_lr_init = warmup_lr_init
|
|
|
|
|
if self.warmup_updates:
|
|
|
|
@ -65,7 +66,7 @@ class TanhLRScheduler(Scheduler):
|
|
|
|
|
t_i = self.t_initial
|
|
|
|
|
t_curr = curr_updates - (self.t_initial * i)
|
|
|
|
|
|
|
|
|
|
if self.cycle_limit == 0 or i <= self.cycle_limit:
|
|
|
|
|
if self.cycle_limit == 0 or (self.cycle_limit > 0 and i < self.cycle_limit):
|
|
|
|
|
gamma = self.decay_rate ** i
|
|
|
|
|
lr_min = self.lr_min * gamma
|
|
|
|
|
lr_max_values = [v * gamma for v in self.base_values]
|
|
|
|
|