parent
a336e5bff3
commit
824f42e75e
@ -0,0 +1,81 @@
|
||||
import logging
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from .scheduler import Scheduler
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TanhLRScheduler(Scheduler):
|
||||
"""
|
||||
Cosine annealing with restarts.
|
||||
This is described in the paper https://arxiv.org/abs/1608.03983.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
t_initial: int,
|
||||
lb: float = -6.,
|
||||
ub: float = 4.,
|
||||
t_mul: float = 1.,
|
||||
lr_min: float = 0.,
|
||||
decay_rate: float = 1.,
|
||||
warmup_updates=0,
|
||||
warmup_lr_init=0,
|
||||
initialize=True) -> None:
|
||||
super().__init__(optimizer, param_group_field="lr", initialize=initialize)
|
||||
|
||||
assert t_initial > 0
|
||||
assert lr_min >= 0
|
||||
self.lb = lb
|
||||
self.ub = ub
|
||||
self.t_initial = t_initial
|
||||
self.t_mul = t_mul
|
||||
self.lr_min = lr_min
|
||||
self.decay_rate = decay_rate
|
||||
self.cycle_limit = 0
|
||||
self.warmup_updates = warmup_updates
|
||||
self.warmup_lr_init = warmup_lr_init
|
||||
if self.warmup_updates:
|
||||
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_updates for v in self.base_values]
|
||||
else:
|
||||
self.warmup_steps = [1 for _ in self.base_values]
|
||||
if self.warmup_lr_init:
|
||||
super().update_groups(self.warmup_lr_init)
|
||||
|
||||
def get_epoch_values(self, epoch: int):
|
||||
# this scheduler doesn't update on epoch
|
||||
return None
|
||||
|
||||
def get_update_values(self, num_updates: int):
|
||||
if num_updates < self.warmup_updates:
|
||||
lrs = [self.warmup_lr_init + num_updates * s for s in self.warmup_steps]
|
||||
else:
|
||||
curr_updates = num_updates - self.warmup_updates
|
||||
|
||||
if self.t_mul != 1:
|
||||
i = math.floor(math.log(1 - curr_updates / self.t_initial * (1 - self.t_mul), self.t_mul))
|
||||
t_i = self.t_mul ** i * self.t_initial
|
||||
t_curr = curr_updates - (1 - self.t_mul ** i) / (1 - self.t_mul) * self.t_initial
|
||||
else:
|
||||
i = curr_updates // self.t_initial
|
||||
t_i = self.t_initial
|
||||
t_curr = curr_updates - (self.t_initial * i)
|
||||
|
||||
if self.cycle_limit == 0 or i <= self.cycle_limit:
|
||||
gamma = self.decay_rate ** i
|
||||
lr_min = self.lr_min * gamma
|
||||
lr_max_values = [v * gamma for v in self.base_values]
|
||||
|
||||
tr = t_curr / t_i
|
||||
lrs = [
|
||||
lr_min + 0.5 * (lr_max - lr_min) * (1 - math.tanh(self.lb * (1. - tr) + self.ub * tr))
|
||||
for lr_max in lr_max_values
|
||||
]
|
||||
else:
|
||||
lrs = [self.lr_min * (self.decay_rate ** self.cycle_limit) for _ in self.base_values]
|
||||
|
||||
return lrs
|
Loading…
Reference in new issue