Exclude batchnorm and bias params from weight_decay by default

pull/1/head
Ross Wightman 6 years ago
parent 34cd76899f
commit 8fbd62a169

@ -2,32 +2,54 @@ from torch import optim as optim
from optim import Nadam, AdaBound, RMSpropTF
def create_optimizer(args, parameters):
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
no_decay.append(param)
else:
decay.append(param)
return [
{'params': no_decay, 'weight_decay': 0.},
{'params': decay, 'weight_decay': weight_decay}]
def create_optimizer(args, model, filter_bias_and_bn=True):
weight_decay = args.weight_decay
if weight_decay and filter_bias_and_bn:
parameters = add_weight_decay(model, weight_decay)
weight_decay = 0.
else:
parameters = model.parameters()
if args.opt.lower() == 'sgd':
optimizer = optim.SGD(
parameters, lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True)
momentum=args.momentum, weight_decay=weight_decay, nesterov=True)
elif args.opt.lower() == 'adam':
optimizer = optim.Adam(
parameters, lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
elif args.opt.lower() == 'nadam':
optimizer = Nadam(
parameters, lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
elif args.opt.lower() == 'adabound':
optimizer = AdaBound(
parameters, lr=args.lr / 100, weight_decay=args.weight_decay, eps=args.opt_eps,
parameters, lr=args.lr / 100, weight_decay=weight_decay, eps=args.opt_eps,
final_lr=args.lr)
elif args.opt.lower() == 'adadelta':
optimizer = optim.Adadelta(
parameters, lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
elif args.opt.lower() == 'rmsprop':
optimizer = optim.RMSprop(
parameters, lr=args.lr, alpha=0.9, eps=args.opt_eps,
momentum=args.momentum, weight_decay=args.weight_decay)
momentum=args.momentum, weight_decay=weight_decay)
elif args.opt.lower() == 'rmsproptf':
optimizer = RMSpropTF(
parameters, lr=args.lr, alpha=0.9, eps=args.opt_eps,
momentum=args.momentum, weight_decay=args.weight_decay)
momentum=args.momentum, weight_decay=weight_decay)
else:
assert False and "Invalid optimizer"
raise ValueError

@ -185,7 +185,7 @@ def main():
else:
model.cuda()
optimizer = create_optimizer(args, model.parameters())
optimizer = create_optimizer(args, model)
if optimizer_state is not None:
optimizer.load_state_dict(optimizer_state)

Loading…
Cancel
Save