Prep mnasnet for pretrained models, use the select global pool, some comment mistakes

pull/1/head
Ross Wightman 6 years ago
parent 6b4f9ba223
commit 996c77aa94

@ -29,7 +29,7 @@ def _cfg(url='', **kwargs):
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'layer0.conv1', 'classifier': 'last_linear',
'first_conv': 'conv_stem', 'classifier': 'classifier',
**kwargs
}
@ -207,12 +207,11 @@ class MnasNet(nn.Module):
global_pool='avg', act_fn=F.relu):
super(MnasNet, self).__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
self.global_pool = global_pool
self.act_fn = act_fn
self.depth_multiplier = depth_multiplier
self.bn_momentum = bn_momentum
self.bn_eps = bn_eps
self.drop_rate = drop_rate
self.act_fn = act_fn
self.num_features = 1280
self.conv_stem = nn.Conv2d(in_chans, stem_size, 3, padding=1, stride=2, bias=False)
@ -230,7 +229,7 @@ class MnasNet(nn.Module):
self.conv_head = nn.Conv2d(out_chs, self.num_features, 1, padding=0, stride=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.num_features, momentum=self.bn_momentum, eps=self.bn_eps)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.classifier = nn.Linear(self.num_features, self.num_classes)
for m in self.modules():
@ -251,11 +250,12 @@ class MnasNet(nn.Module):
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
#self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.num_classes = num_classes
del self.classifier
if num_classes:
self.classifier = nn.Linear(self.num_features, num_classes)
self.classifier = nn.Linear(
self.num_features * self.global_pool.feat_mult(), num_classes)
else:
self.classifier = None
@ -282,7 +282,7 @@ class MnasNet(nn.Module):
def mnasnet_a1(depth_multiplier, num_classes=1000, **kwargs):
"""Creates a mnasnet-a1 model.
Args:
depth_multiplier: multiplier to number of filters per layer.
depth_multiplier: multiplier to number of channels per layer.
"""
# defs from https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
@ -314,7 +314,7 @@ def mnasnet_a1(depth_multiplier, num_classes=1000, **kwargs):
def mnasnet_b1(depth_multiplier, num_classes=1000, **kwargs):
"""Creates a mnasnet-b1 model.
Args:
depth_multiplier: multiplier to number of filters per layer.
depth_multiplier: multiplier to number of channels per layer.
"""
# from https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
blocks_defs = [
@ -345,7 +345,7 @@ def mnasnet_b1(depth_multiplier, num_classes=1000, **kwargs):
def mnasnet_small(depth_multiplier, num_classes=1000, **kwargs):
"""Creates a mnasnet-b1 model.
Args:
depth_multiplier: multiplier to number of filters per layer.
depth_multiplier: multiplier to number of channels per layer.
"""
# from https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
blocks_defs = [
@ -378,6 +378,8 @@ def mnasnet0_50(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
default_cfg = default_cfgs['mnasnet0_50']
model = mnasnet_b1(0.5, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
@ -386,6 +388,8 @@ def mnasnet0_75(num_classes, in_chans=3, pretrained=False, **kwargs):
default_cfg = default_cfgs['mnasnet0_50']
model = mnasnet_b1(0.75, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
@ -394,6 +398,8 @@ def mnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
default_cfg = default_cfgs['mnasnet0_50']
model = mnasnet_b1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
@ -402,6 +408,8 @@ def mnasnet1_40(num_classes, in_chans=3, pretrained=False, **kwargs):
default_cfg = default_cfgs['mnasnet0_50']
model = mnasnet_b1(1.4, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
@ -410,6 +418,8 @@ def semnasnet0_50(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
default_cfg = default_cfgs['mnasnet0_50']
model = mnasnet_a1(0.5, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
@ -418,27 +428,36 @@ def semnasnet0_75(num_classes, in_chans=3, pretrained=False, **kwargs):
default_cfg = default_cfgs['mnasnet0_50']
model = mnasnet_a1(0.75, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def semnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet Small, depth multiplier of 1.0. """
""" MNASNet A1 (w/ SE), depth multiplier of 1.0. """
default_cfg = default_cfgs['mnasnet0_50']
model = mnasnet_a1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def semnasnet1_40(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet with depth multiplier of 1.3. """
""" MNASNet A1 (w/ SE), depth multiplier of 1.4. """
default_cfg = default_cfgs['mnasnet0_50']
model = mnasnet_a1(1.4, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def mnasnet_small(num_classes, in_chans=3, pretrained=False, **kwargs):
""" MNASNet Small, depth multiplier of 1.0. """
default_cfg = default_cfgs['mnasnet_small']
model = mnasnet_small(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model

Loading…
Cancel
Save