|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import platform
|
|
|
|
import os
|
|
|
|
import fnmatch
|
|
|
|
|
|
|
|
try:
|
|
|
|
from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer
|
|
|
|
has_fx_feature_extraction = True
|
|
|
|
except ImportError:
|
|
|
|
has_fx_feature_extraction = False
|
|
|
|
|
|
|
|
import timm
|
|
|
|
from timm import list_models, create_model, set_scriptable, has_model_default_key, is_model_default_key, \
|
|
|
|
get_model_default_value
|
|
|
|
from timm.models.fx_features import _leaf_modules, _autowrap_functions
|
|
|
|
|
|
|
|
if hasattr(torch._C, '_jit_set_profiling_executor'):
|
|
|
|
# legacy executor is too slow to compile large models for unit tests
|
|
|
|
# no need for the fusion performance here
|
|
|
|
torch._C._jit_set_profiling_executor(True)
|
|
|
|
torch._C._jit_set_profiling_mode(False)
|
|
|
|
|
|
|
|
# transformer models don't support many of the spatial / feature based model functionalities
|
|
|
|
NON_STD_FILTERS = [
|
|
|
|
'vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*',
|
|
|
|
'convit_*', 'levit*', 'visformer*', 'deit*', 'jx_nest_*', 'nest_*', 'xcit_*', 'crossvit_*', 'beit_*']
|
|
|
|
NUM_NON_STD = len(NON_STD_FILTERS)
|
|
|
|
|
|
|
|
# exclude models that cause specific test failures
|
|
|
|
if 'GITHUB_ACTIONS' in os.environ: # and 'Linux' in platform.system():
|
|
|
|
# GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
|
|
|
|
EXCLUDE_FILTERS = [
|
|
|
|
'*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm', '*101x3_bitm', '*50x3_bitm',
|
|
|
|
'*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*', '*efficientnetv2_xl*',
|
|
|
|
'*resnetrs350*', '*resnetrs420*', 'xcit_large_24_p8*']
|
|
|
|
else:
|
|
|
|
EXCLUDE_FILTERS = []
|
|
|
|
|
|
|
|
TARGET_FWD_SIZE = MAX_FWD_SIZE = 384
|
|
|
|
TARGET_BWD_SIZE = 128
|
|
|
|
MAX_BWD_SIZE = 320
|
|
|
|
MAX_FWD_OUT_SIZE = 448
|
|
|
|
TARGET_JIT_SIZE = 128
|
|
|
|
MAX_JIT_SIZE = 320
|
|
|
|
TARGET_FFEAT_SIZE = 96
|
|
|
|
MAX_FFEAT_SIZE = 256
|
|
|
|
TARGET_FWD_FX_SIZE = 128
|
|
|
|
MAX_FWD_FX_SIZE = 224
|
|
|
|
TARGET_BWD_FX_SIZE = 128
|
|
|
|
MAX_BWD_FX_SIZE = 224
|
|
|
|
|
|
|
|
|
|
|
|
def _get_input_size(model=None, model_name='', target=None):
|
|
|
|
if model is None:
|
|
|
|
assert model_name, "One of model or model_name must be provided"
|
|
|
|
input_size = get_model_default_value(model_name, 'input_size')
|
|
|
|
fixed_input_size = get_model_default_value(model_name, 'fixed_input_size')
|
|
|
|
min_input_size = get_model_default_value(model_name, 'min_input_size')
|
|
|
|
else:
|
|
|
|
default_cfg = model.default_cfg
|
|
|
|
input_size = default_cfg['input_size']
|
|
|
|
fixed_input_size = default_cfg.get('fixed_input_size', None)
|
|
|
|
min_input_size = default_cfg.get('min_input_size', None)
|
|
|
|
assert input_size is not None
|
|
|
|
|
|
|
|
if fixed_input_size:
|
|
|
|
return input_size
|
|
|
|
|
|
|
|
if min_input_size:
|
|
|
|
if target and max(input_size) > target:
|
|
|
|
input_size = min_input_size
|
|
|
|
else:
|
|
|
|
if target and max(input_size) > target:
|
|
|
|
input_size = tuple([min(x, target) for x in input_size])
|
|
|
|
return input_size
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_forward(model_name, batch_size):
|
|
|
|
"""Run a single forward pass with each model"""
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
input_size = _get_input_size(model=model, target=TARGET_FWD_SIZE)
|
|
|
|
if max(input_size) > MAX_FWD_SIZE:
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
inputs = torch.randn((batch_size, *input_size))
|
|
|
|
outputs = model(inputs)
|
|
|
|
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS, name_matches_cfg=True))
|
|
|
|
@pytest.mark.parametrize('batch_size', [2])
|
|
|
|
def test_model_backward(model_name, batch_size):
|
|
|
|
"""Run a single forward pass with each model"""
|
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_SIZE)
|
|
|
|
if max(input_size) > MAX_BWD_SIZE:
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
|
|
|
|
model = create_model(model_name, pretrained=False, num_classes=42)
|
|
|
|
num_params = sum([x.numel() for x in model.parameters()])
|
|
|
|
model.train()
|
|
|
|
|
|
|
|
inputs = torch.randn((batch_size, *input_size))
|
|
|
|
outputs = model(inputs)
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
outputs = torch.cat(outputs)
|
|
|
|
outputs.mean().backward()
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
for n, x in model.named_parameters():
|
|
|
|
assert x.grad is not None, f'No gradient for {n}'
|
|
|
|
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
|
|
|
|
|
|
|
|
assert outputs.shape[-1] == 42
|
|
|
|
assert num_params == num_grad, 'Some parameters are missing gradients'
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(300)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=NON_STD_FILTERS))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_default_cfgs(model_name, batch_size):
|
|
|
|
"""Run a single forward pass with each model"""
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model.eval()
|
|
|
|
state_dict = model.state_dict()
|
|
|
|
cfg = model.default_cfg
|
|
|
|
|
|
|
|
pool_size = cfg['pool_size']
|
|
|
|
input_size = model.default_cfg['input_size']
|
|
|
|
|
|
|
|
if all([x <= MAX_FWD_OUT_SIZE for x in input_size]) and \
|
|
|
|
not any([fnmatch.fnmatch(model_name, x) for x in EXCLUDE_FILTERS]):
|
|
|
|
# output sizes only checked if default res <= 448 * 448 to keep resource down
|
|
|
|
input_size = tuple([min(x, MAX_FWD_OUT_SIZE) for x in input_size])
|
|
|
|
input_tensor = torch.randn((batch_size, *input_size))
|
|
|
|
|
|
|
|
# test forward_features (always unpooled)
|
|
|
|
outputs = model.forward_features(input_tensor)
|
|
|
|
assert outputs.shape[-1] == pool_size[-1] and outputs.shape[-2] == pool_size[-2]
|
|
|
|
|
|
|
|
# test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
|
|
|
|
model.reset_classifier(0)
|
|
|
|
outputs = model.forward(input_tensor)
|
|
|
|
assert len(outputs.shape) == 2
|
|
|
|
assert outputs.shape[-1] == model.num_features
|
|
|
|
|
|
|
|
# test model forward without pooling and classifier
|
|
|
|
model.reset_classifier(0, '') # reset classifier and set global pooling to pass-through
|
|
|
|
outputs = model.forward(input_tensor)
|
|
|
|
assert len(outputs.shape) == 4
|
|
|
|
if not isinstance(model, timm.models.MobileNetV3) and not isinstance(model, timm.models.GhostNet):
|
|
|
|
# FIXME mobilenetv3/ghostnet forward_features vs removed pooling differ
|
|
|
|
assert outputs.shape[-1] == pool_size[-1] and outputs.shape[-2] == pool_size[-2]
|
|
|
|
|
|
|
|
if 'pruned' not in model_name: # FIXME better pruned model handling
|
|
|
|
# test classifier + global pool deletion via __init__
|
|
|
|
model = create_model(model_name, pretrained=False, num_classes=0, global_pool='').eval()
|
|
|
|
outputs = model.forward(input_tensor)
|
|
|
|
assert len(outputs.shape) == 4
|
|
|
|
if not isinstance(model, timm.models.MobileNetV3) and not isinstance(model, timm.models.GhostNet):
|
|
|
|
# FIXME mobilenetv3/ghostnet forward_features vs removed pooling differ
|
|
|
|
assert outputs.shape[-1] == pool_size[-1] and outputs.shape[-2] == pool_size[-2]
|
|
|
|
|
|
|
|
# check classifier name matches default_cfg
|
|
|
|
classifier = cfg['classifier']
|
|
|
|
if not isinstance(classifier, (tuple, list)):
|
|
|
|
classifier = classifier,
|
|
|
|
for c in classifier:
|
|
|
|
assert c + ".weight" in state_dict.keys(), f'{c} not in model params'
|
|
|
|
|
|
|
|
# check first conv(s) names match default_cfg
|
|
|
|
first_conv = cfg['first_conv']
|
|
|
|
if isinstance(first_conv, str):
|
|
|
|
first_conv = (first_conv,)
|
|
|
|
assert isinstance(first_conv, (tuple, list))
|
|
|
|
for fc in first_conv:
|
|
|
|
assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params'
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(300)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(filter=NON_STD_FILTERS))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_default_cfgs_non_std(model_name, batch_size):
|
|
|
|
"""Run a single forward pass with each model"""
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model.eval()
|
|
|
|
state_dict = model.state_dict()
|
|
|
|
cfg = model.default_cfg
|
|
|
|
|
|
|
|
input_size = _get_input_size(model=model)
|
|
|
|
if max(input_size) > 320: # FIXME const
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
|
|
|
|
input_tensor = torch.randn((batch_size, *input_size))
|
|
|
|
|
|
|
|
outputs = model.forward_features(input_tensor)
|
|
|
|
if isinstance(outputs, (tuple, list)):
|
|
|
|
outputs = outputs[0]
|
|
|
|
assert outputs.shape[1] == model.num_features
|
|
|
|
|
|
|
|
# test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
|
|
|
|
model.reset_classifier(0)
|
|
|
|
outputs = model.forward(input_tensor)
|
|
|
|
if isinstance(outputs, (tuple, list)):
|
|
|
|
outputs = outputs[0]
|
|
|
|
assert len(outputs.shape) == 2
|
|
|
|
assert outputs.shape[1] == model.num_features
|
|
|
|
|
|
|
|
model = create_model(model_name, pretrained=False, num_classes=0).eval()
|
|
|
|
outputs = model.forward(input_tensor)
|
|
|
|
if isinstance(outputs, (tuple, list)):
|
|
|
|
outputs = outputs[0]
|
|
|
|
assert len(outputs.shape) == 2
|
|
|
|
assert outputs.shape[1] == model.num_features
|
|
|
|
|
|
|
|
# check classifier name matches default_cfg
|
|
|
|
classifier = cfg['classifier']
|
|
|
|
if not isinstance(classifier, (tuple, list)):
|
|
|
|
classifier = classifier,
|
|
|
|
for c in classifier:
|
|
|
|
assert c + ".weight" in state_dict.keys(), f'{c} not in model params'
|
|
|
|
|
|
|
|
# check first conv(s) names match default_cfg
|
|
|
|
first_conv = cfg['first_conv']
|
|
|
|
if isinstance(first_conv, str):
|
|
|
|
first_conv = (first_conv,)
|
|
|
|
assert isinstance(first_conv, (tuple, list))
|
|
|
|
for fc in first_conv:
|
|
|
|
assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params'
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
|
|
|
|
|
|
|
|
if 'GITHUB_ACTIONS' not in os.environ:
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(pretrained=True))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_load_pretrained(model_name, batch_size):
|
|
|
|
"""Create that pretrained weights load, verify support for in_chans != 3 while doing so."""
|
|
|
|
in_chans = 3 if 'pruned' in model_name else 1 # pruning not currently supported with in_chans change
|
|
|
|
create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=5)
|
|
|
|
create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=0)
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(pretrained=True, exclude_filters=NON_STD_FILTERS))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_features_pretrained(model_name, batch_size):
|
|
|
|
"""Create that pretrained weights load when features_only==True."""
|
|
|
|
create_model(model_name, pretrained=True, features_only=True)
|
|
|
|
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
EXCLUDE_JIT_FILTERS = [
|
|
|
|
'*iabn*', 'tresnet*', # models using inplace abn unlikely to ever be scriptable
|
|
|
|
'dla*', 'hrnet*', 'ghostnet*', # hopefully fix at some point
|
|
|
|
'vit_large_*', 'vit_huge_*',
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
'model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS, name_matches_cfg=True))
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_forward_torchscript(model_name, batch_size):
|
|
|
|
"""Run a single forward pass with each model"""
|
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
|
|
|
|
if max(input_size) > MAX_JIT_SIZE:
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
with set_scriptable(True):
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model.eval()
|
|
|
|
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
model = torch.jit.script(model)
|
|
|
|
outputs = model(torch.randn((batch_size, *input_size)))
|
|
|
|
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
|
|
|
|
|
|
|
|
EXCLUDE_FEAT_FILTERS = [
|
|
|
|
'*pruned*', # hopefully fix at some point
|
|
|
|
] + NON_STD_FILTERS
|
|
|
|
if 'GITHUB_ACTIONS' in os.environ: # and 'Linux' in platform.system():
|
|
|
|
# GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
|
|
|
|
EXCLUDE_FEAT_FILTERS += ['*resnext101_32x32d', '*resnext101_32x16d']
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FEAT_FILTERS))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_forward_features(model_name, batch_size):
|
|
|
|
"""Run a single forward pass with each model in feature extraction mode"""
|
|
|
|
model = create_model(model_name, pretrained=False, features_only=True)
|
|
|
|
model.eval()
|
|
|
|
expected_channels = model.feature_info.channels()
|
|
|
|
assert len(expected_channels) >= 4 # all models here should have at least 4 feature levels by default, some 5 or 6
|
|
|
|
|
|
|
|
input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE)
|
|
|
|
if max(input_size) > MAX_FFEAT_SIZE:
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
|
|
|
|
outputs = model(torch.randn((batch_size, *input_size)))
|
|
|
|
assert len(expected_channels) == len(outputs)
|
|
|
|
for e, o in zip(expected_channels, outputs):
|
|
|
|
assert e == o.shape[1]
|
|
|
|
assert o.shape[0] == batch_size
|
|
|
|
assert not torch.isnan(o).any()
|
|
|
|
|
|
|
|
|
|
|
|
def _create_fx_model(model, train=False):
|
|
|
|
# This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode
|
|
|
|
# So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output
|
|
|
|
# node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names
|
|
|
|
train_nodes, eval_nodes = get_graph_node_names(
|
|
|
|
model, tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)})
|
|
|
|
|
|
|
|
eval_return_nodes = [eval_nodes[-1]]
|
|
|
|
train_return_nodes = [train_nodes[-1]]
|
|
|
|
if train:
|
|
|
|
tracer = NodePathTracer(leaf_modules=list(_leaf_modules), autowrap_functions=list(_autowrap_functions))
|
|
|
|
graph = tracer.trace(model)
|
|
|
|
graph_nodes = list(reversed(graph.nodes))
|
|
|
|
output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()]
|
|
|
|
graph_node_names = [n.name for n in graph_nodes]
|
|
|
|
output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names]
|
|
|
|
train_return_nodes = [train_nodes[ix] for ix in output_node_indices]
|
|
|
|
|
|
|
|
fx_model = create_feature_extractor(
|
|
|
|
model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes,
|
|
|
|
tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)})
|
|
|
|
return fx_model
|
|
|
|
|
|
|
|
|
|
|
|
EXCLUDE_FX_FILTERS = []
|
|
|
|
# not enough memory to run fx on more models than other tests
|
|
|
|
if 'GITHUB_ACTIONS' in os.environ:
|
|
|
|
EXCLUDE_FX_FILTERS += [
|
|
|
|
'beit_large*',
|
|
|
|
'swin_large*',
|
|
|
|
'*resnext101_32x32d',
|
|
|
|
'resnetv2_152x2*',
|
|
|
|
'*nfnet_f2*',
|
|
|
|
'resmlp_big*',
|
|
|
|
'resnetrs270',
|
|
|
|
'vgg*',
|
|
|
|
'vit_large*',
|
|
|
|
'xcit_large*',
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_forward_fx(model_name, batch_size):
|
|
|
|
"""
|
|
|
|
Symbolically trace each model and run single forward pass through the resulting GraphModule
|
|
|
|
Also check that the output of a forward pass through the GraphModule is the same as that from the original Module
|
|
|
|
"""
|
|
|
|
if not has_fx_feature_extraction:
|
|
|
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
|
|
|
|
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE)
|
|
|
|
if max(input_size) > MAX_FWD_FX_SIZE:
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
inputs = torch.randn((batch_size, *input_size))
|
|
|
|
outputs = model(inputs)
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
outputs = torch.cat(outputs)
|
|
|
|
|
|
|
|
model = _create_fx_model(model)
|
|
|
|
fx_outputs = tuple(model(inputs).values())
|
|
|
|
if isinstance(fx_outputs, tuple):
|
|
|
|
fx_outputs = torch.cat(fx_outputs)
|
|
|
|
|
|
|
|
assert torch.all(fx_outputs == outputs)
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(
|
|
|
|
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True))
|
|
|
|
@pytest.mark.parametrize('batch_size', [2])
|
|
|
|
def test_model_backward_fx(model_name, batch_size):
|
|
|
|
"""Symbolically trace each model and run single backward pass through the resulting GraphModule"""
|
|
|
|
if not has_fx_feature_extraction:
|
|
|
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
|
|
|
|
|
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE)
|
|
|
|
if max(input_size) > MAX_BWD_FX_SIZE:
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
|
|
|
|
model = create_model(model_name, pretrained=False, num_classes=42)
|
|
|
|
num_params = sum([x.numel() for x in model.parameters()])
|
|
|
|
model.train()
|
|
|
|
|
|
|
|
model = _create_fx_model(model, train=True)
|
|
|
|
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
outputs = torch.cat(outputs)
|
|
|
|
outputs.mean().backward()
|
|
|
|
for n, x in model.named_parameters():
|
|
|
|
assert x.grad is not None, f'No gradient for {n}'
|
|
|
|
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
|
|
|
|
|
|
|
|
assert outputs.shape[-1] == 42
|
|
|
|
assert num_params == num_grad, 'Some parameters are missing gradients'
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
|
|
|
|
# reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow
|
|
|
|
EXCLUDE_FX_JIT_FILTERS = [
|
|
|
|
'deit_*_distilled_patch16_224',
|
|
|
|
'levit*',
|
|
|
|
'pit_*_distilled_224',
|
|
|
|
] + EXCLUDE_FX_FILTERS
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
'model_name', list_models(
|
|
|
|
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_forward_fx_torchscript(model_name, batch_size):
|
|
|
|
"""Symbolically trace each model, script it, and run single forward pass"""
|
|
|
|
if not has_fx_feature_extraction:
|
|
|
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
|
|
|
|
|
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
|
|
|
|
if max(input_size) > MAX_JIT_SIZE:
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
|
|
|
|
with set_scriptable(True):
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
model = torch.jit.script(_create_fx_model(model))
|
|
|
|
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
outputs = torch.cat(outputs)
|
|
|
|
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|