@ -92,11 +92,6 @@ default_cfgs = {
interpolation = ' bilinear ' ) ,
# NOTE experimenting with alternate attention
' eca_efficientnet_b0 ' : _cfg (
url = ' ' ) ,
' gc_efficientnet_b0 ' : _cfg (
url = ' ' ) ,
' efficientnet_b0 ' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth ' ) ,
' efficientnet_b1 ' : _cfg (
@ -169,7 +164,7 @@ default_cfgs = {
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnetv2_t_agc-3620981a.pth ' ,
input_size = ( 3 , 224 , 224 ) , test_input_size = ( 3 , 288 , 288 ) , pool_size = ( 7 , 7 ) , crop_pct = 1.0 ) ,
' gc_efficientnetv2_rw_t ' : _cfg (
url = ' ',
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gc_efficientnetv2_rw_t_agc-927a0bde.pth ',
input_size = ( 3 , 224 , 224 ) , test_input_size = ( 3 , 288 , 288 ) , pool_size = ( 7 , 7 ) , crop_pct = 1.0 ) ,
' efficientnetv2_rw_s ' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_v2s_ra2_288-a6477665.pth ' ,
@ -362,7 +357,7 @@ default_cfgs = {
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
' tf_efficientnetv2_xl_in21ft1k ' : _cfg (
url = ' ',
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21ft1k-06c35c48.pth ',
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 512 , 512 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
@ -379,7 +374,7 @@ default_cfgs = {
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) , num_classes = 21843 ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
' tf_efficientnetv2_xl_in21k ' : _cfg (
url = ' ',
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21k-fd7e8abf.pth ',
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) , num_classes = 21843 ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 512 , 512 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
@ -1276,26 +1271,6 @@ def efficientnet_b0(pretrained=False, **kwargs):
return model
@register_model
def eca_efficientnet_b0 ( pretrained = False , * * kwargs ) :
""" EfficientNet-B0 w/ ECA attn """
# NOTE experimental config
model = _gen_efficientnet (
' eca_efficientnet_b0 ' , se_layer = ' ecam ' , channel_multiplier = 1.0 , depth_multiplier = 1.0 ,
pretrained = pretrained , * * kwargs )
return model
@register_model
def gc_efficientnet_b0 ( pretrained = False , * * kwargs ) :
""" EfficientNet-B0 w/ GlobalContext """
# NOTE experminetal config
model = _gen_efficientnet (
' gc_efficientnet_b0 ' , se_layer = ' gc ' , channel_multiplier = 1.0 , depth_multiplier = 1.0 ,
pretrained = pretrained , * * kwargs )
return model
@register_model
def efficientnet_b1 ( pretrained = False , * * kwargs ) :
""" EfficientNet-B1 """