Merge branch 'master' into levit_visformer_rednet

pull/637/head
Ross Wightman 3 years ago
commit f45de37690

@ -26,9 +26,9 @@ I'm fortunate to be able to dedicate significant time and money of my own suppor
### May 14, 2021
* Add EfficientNet-V2 official model defs w/ ported weights from official [Tensorflow/Keras](https://github.com/google/automl/tree/master/efficientnetv2) impl.
* 1k trained variants: `tf_efficientnetv2_s/m/l`
* 21k trained variants: `tf_efficientnetv2_s/m/l_21k`
* 21k pretrained -> 1k fine-tuned: `tf_efficientnetv2_s/m/l_21ft1k`
* v2 models w/ v1 scaling: `tf_efficientnet_v2_b0` through `b3`
* 21k trained variants: `tf_efficientnetv2_s/m/l_in21k`
* 21k pretrained -> 1k fine-tuned: `tf_efficientnetv2_s/m/l_in21ft1k`
* v2 models w/ v1 scaling: `tf_efficientnetv2_b0` through `b3`
* Rename my prev V2 guess `efficientnet_v2s` -> `efficientnetv2_rw_s`
* Some blank `efficientnetv2_*` models in-place for future native PyTorch training

@ -114,13 +114,13 @@ def main():
_logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format(
batch_idx, len(loader), batch_time=batch_time))
topk_ids = np.concatenate(topk_ids, axis=0).squeeze()
topk_ids = np.concatenate(topk_ids, axis=0)
with open(os.path.join(args.output_dir, './topk_ids.csv'), 'w') as out_file:
filenames = loader.dataset.filenames(basename=True)
for filename, label in zip(filenames, topk_ids):
out_file.write('{0},{1},{2},{3},{4},{5}\n'.format(
filename, label[0], label[1], label[2], label[3], label[4]))
out_file.write('{0},{1}\n'.format(
filename, ','.join([ str(v) for v in label])))
if __name__ == '__main__':

@ -15,7 +15,9 @@ if hasattr(torch._C, '_jit_set_profiling_executor'):
torch._C._jit_set_profiling_mode(False)
# transformer models don't support many of the spatial / feature based model functionalities
NON_STD_FILTERS = ['vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', 'mixer_*', 'levit*', 'visformer*']
NON_STD_FILTERS = [
'vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*',
'convit_*', 'levit*', 'visformer*']
NUM_NON_STD = len(NON_STD_FILTERS)
# exclude models that cause specific test failures

@ -2,6 +2,7 @@ from .byoanet import *
from .byobnet import *
from .cait import *
from .coat import *
from .convit import *
from .cspnet import *
from .densenet import *
from .dla import *
@ -42,6 +43,7 @@ from .vision_transformer_hybrid import *
from .vovnet import *
from .xception import *
from .xception_aligned import *
from .twins import *
from .factory import create_model, split_model_name, safe_model_name
from .helpers import load_checkpoint, resume_checkpoint, model_parameters

@ -0,0 +1,350 @@
""" ConViT Model
@article{d2021convit,
title={ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases},
author={d'Ascoli, St{\'e}phane and Touvron, Hugo and Leavitt, Matthew and Morcos, Ari and Biroli, Giulio and Sagun, Levent},
journal={arXiv preprint arXiv:2103.10697},
year={2021}
}
Paper link: https://arxiv.org/abs/2103.10697
Original code: https://github.com/facebookresearch/convit, original copyright below
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.
#
'''These modules are adapted from those of timm, see
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
'''
import torch
import torch.nn as nn
from functools import partial
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import DropPath, to_2tuple, trunc_normal_, PatchEmbed, Mlp
from .registry import register_model
from .vision_transformer_hybrid import HybridEmbed
import torch
import torch.nn as nn
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
# ConViT
'convit_tiny': _cfg(
url="https://dl.fbaipublicfiles.com/convit/convit_tiny.pth"),
'convit_small': _cfg(
url="https://dl.fbaipublicfiles.com/convit/convit_small.pth"),
'convit_base': _cfg(
url="https://dl.fbaipublicfiles.com/convit/convit_base.pth")
}
class GPSA(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,
locality_strength=1.):
super().__init__()
self.num_heads = num_heads
self.dim = dim
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.locality_strength = locality_strength
self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.pos_proj = nn.Linear(3, num_heads)
self.proj_drop = nn.Dropout(proj_drop)
self.locality_strength = locality_strength
self.gating_param = nn.Parameter(torch.ones(self.num_heads))
self.rel_indices: torch.Tensor = torch.zeros(1, 1, 1, 3) # silly torchscript hack, won't work with None
def forward(self, x):
B, N, C = x.shape
if self.rel_indices is None or self.rel_indices.shape[1] != N:
self.rel_indices = self.get_rel_indices(N)
attn = self.get_attention(x)
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def get_attention(self, x):
B, N, C = x.shape
qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k = qk[0], qk[1]
pos_score = self.rel_indices.expand(B, -1, -1, -1)
pos_score = self.pos_proj(pos_score).permute(0, 3, 1, 2)
patch_score = (q @ k.transpose(-2, -1)) * self.scale
patch_score = patch_score.softmax(dim=-1)
pos_score = pos_score.softmax(dim=-1)
gating = self.gating_param.view(1, -1, 1, 1)
attn = (1. - torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score
attn /= attn.sum(dim=-1).unsqueeze(-1)
attn = self.attn_drop(attn)
return attn
def get_attention_map(self, x, return_map=False):
attn_map = self.get_attention(x).mean(0) # average over batch
distances = self.rel_indices.squeeze()[:, :, -1] ** .5
dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / distances.size(0)
if return_map:
return dist, attn_map
else:
return dist
def local_init(self):
self.v.weight.data.copy_(torch.eye(self.dim))
locality_distance = 1 # max(1,1/locality_strength**.5)
kernel_size = int(self.num_heads ** .5)
center = (kernel_size - 1) / 2 if kernel_size % 2 == 0 else kernel_size // 2
for h1 in range(kernel_size):
for h2 in range(kernel_size):
position = h1 + kernel_size * h2
self.pos_proj.weight.data[position, 2] = -1
self.pos_proj.weight.data[position, 1] = 2 * (h1 - center) * locality_distance
self.pos_proj.weight.data[position, 0] = 2 * (h2 - center) * locality_distance
self.pos_proj.weight.data *= self.locality_strength
def get_rel_indices(self, num_patches: int) -> torch.Tensor:
img_size = int(num_patches ** .5)
rel_indices = torch.zeros(1, num_patches, num_patches, 3)
ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1)
indx = ind.repeat(img_size, img_size)
indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1)
indd = indx ** 2 + indy ** 2
rel_indices[:, :, :, 2] = indd.unsqueeze(0)
rel_indices[:, :, :, 1] = indy.unsqueeze(0)
rel_indices[:, :, :, 0] = indx.unsqueeze(0)
device = self.qk.weight.device
return rel_indices.to(device)
class MHSA(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def get_attention_map(self, x, return_map=False):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn_map = (q @ k.transpose(-2, -1)) * self.scale
attn_map = attn_map.softmax(dim=-1).mean(0)
img_size = int(N ** .5)
ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1)
indx = ind.repeat(img_size, img_size)
indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1)
indd = indx ** 2 + indy ** 2
distances = indd ** .5
distances = distances.to('cuda')
dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / N
if return_map:
return dist, attn_map
else:
return dist
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_gpsa=True, **kwargs):
super().__init__()
self.norm1 = norm_layer(dim)
self.use_gpsa = use_gpsa
if self.use_gpsa:
self.attn = GPSA(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
proj_drop=drop, **kwargs)
else:
self.attn = MHSA(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
proj_drop=drop, **kwargs)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class ConViT(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, global_pool=None,
local_up_to_layer=3, locality_strength=1., use_pos_embed=True):
super().__init__()
embed_dim *= num_heads
self.num_classes = num_classes
self.local_up_to_layer = local_up_to_layer
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.locality_strength = locality_strength
self.use_pos_embed = use_pos_embed
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.num_patches = num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if self.use_pos_embed:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.pos_embed, std=.02)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
use_gpsa=True,
locality_strength=locality_strength)
if i < local_up_to_layer else
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
use_gpsa=False)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# Classifier head
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
for n, m in self.named_modules():
if hasattr(m, 'local_init'):
m.local_init()
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
if self.use_pos_embed:
x = x + self.pos_embed
x = self.pos_drop(x)
for u, blk in enumerate(self.blocks):
if u == self.local_up_to_layer:
x = torch.cat((cls_tokens, x), dim=1)
x = blk(x)
x = self.norm(x)
return x[:, 0]
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _create_convit(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
ConViT, variant, pretrained,
default_cfg=default_cfgs[variant],
**kwargs)
@register_model
def convit_tiny(pretrained=False, **kwargs):
model_args = dict(
local_up_to_layer=10, locality_strength=1.0, embed_dim=48,
num_heads=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model = _create_convit(variant='convit_tiny', pretrained=pretrained, **model_args)
return model
@register_model
def convit_small(pretrained=False, **kwargs):
model_args = dict(
local_up_to_layer=10, locality_strength=1.0, embed_dim=48,
num_heads=9, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model = _create_convit(variant='convit_small', pretrained=pretrained, **model_args)
return model
@register_model
def convit_base(pretrained=False, **kwargs):
model_args = dict(
local_up_to_layer=10, locality_strength=1.0, embed_dim=48,
num_heads=16, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model = _create_convit(variant='convit_base', pretrained=pretrained, **model_args)
return model

@ -162,6 +162,9 @@ default_cfgs = {
'efficientnetv2_rw_s': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_v2s_ra2_288-a6477665.pth',
input_size=(3, 288, 288), test_input_size=(3, 384, 384), pool_size=(9, 9), crop_pct=1.0),
'efficientnetv2_rw_m': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnetv2_rw_m_agc-3d90cb1e.pth',
input_size=(3, 320, 320), test_input_size=(3, 416, 416), pool_size=(10, 10), crop_pct=1.0),
'efficientnetv2_s': _cfg(
url='',
@ -173,7 +176,6 @@ default_cfgs = {
url='',
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
'tf_efficientnet_b0': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth',
input_size=(3, 224, 224)),
@ -332,28 +334,28 @@ default_cfgs = {
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
'tf_efficientnetv2_s_21ft1k': _cfg(
'tf_efficientnetv2_s_in21ft1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21ft1k-d7dafa41.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0),
'tf_efficientnetv2_m_21ft1k': _cfg(
'tf_efficientnetv2_m_in21ft1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21ft1k-bf41664a.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
'tf_efficientnetv2_l_21ft1k': _cfg(
'tf_efficientnetv2_l_in21ft1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21ft1k-60127a9d.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
'tf_efficientnetv2_s_21k': _cfg(
'tf_efficientnetv2_s_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843,
input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0),
'tf_efficientnetv2_m_21k': _cfg(
'tf_efficientnetv2_m_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21k-361418a2.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843,
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
'tf_efficientnetv2_l_21k': _cfg(
'tf_efficientnetv2_l_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21k-91a19ec9.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843,
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
@ -1461,7 +1463,7 @@ def efficientnet_b3_pruned(pretrained=False, **kwargs):
@register_model
def efficientnetv2_rw_s(pretrained=False, **kwargs):
""" EfficientNet-V2 Small.
""" EfficientNet-V2 Small RW variant.
NOTE: This is my initial (pre official code release) w/ some differences.
See efficientnetv2_s and tf_efficientnetv2_s for versions that match the official w/ PyTorch vs TF padding
"""
@ -1469,6 +1471,16 @@ def efficientnetv2_rw_s(pretrained=False, **kwargs):
return model
@register_model
def efficientnetv2_rw_m(pretrained=False, **kwargs):
""" EfficientNet-V2 Medium RW variant.
"""
model = _gen_efficientnetv2_s(
'efficientnetv2_rw_m', channel_multiplier=1.2, depth_multiplier=(1.2,) * 4 + (1.6,) * 2, rw=True,
pretrained=pretrained, **kwargs)
return model
@register_model
def efficientnetv2_s(pretrained=False, **kwargs):
""" EfficientNet-V2 Small. """
@ -1929,62 +1941,62 @@ def tf_efficientnetv2_l(pretrained=False, **kwargs):
@register_model
def tf_efficientnetv2_s_21ft1k(pretrained=False, **kwargs):
def tf_efficientnetv2_s_in21ft1k(pretrained=False, **kwargs):
""" EfficientNet-V2 Small. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
"""
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnetv2_s('tf_efficientnetv2_s_21ft1k', pretrained=pretrained, **kwargs)
model = _gen_efficientnetv2_s('tf_efficientnetv2_s_in21ft1k', pretrained=pretrained, **kwargs)
return model
@register_model
def tf_efficientnetv2_m_21ft1k(pretrained=False, **kwargs):
def tf_efficientnetv2_m_in21ft1k(pretrained=False, **kwargs):
""" EfficientNet-V2 Medium. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
"""
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnetv2_m('tf_efficientnetv2_m_21ft1k', pretrained=pretrained, **kwargs)
model = _gen_efficientnetv2_m('tf_efficientnetv2_m_in21ft1k', pretrained=pretrained, **kwargs)
return model
@register_model
def tf_efficientnetv2_l_21ft1k(pretrained=False, **kwargs):
def tf_efficientnetv2_l_in21ft1k(pretrained=False, **kwargs):
""" EfficientNet-V2 Large. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
"""
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnetv2_l('tf_efficientnetv2_l_21ft1k', pretrained=pretrained, **kwargs)
model = _gen_efficientnetv2_l('tf_efficientnetv2_l_in21ft1k', pretrained=pretrained, **kwargs)
return model
@register_model
def tf_efficientnetv2_s_21k(pretrained=False, **kwargs):
def tf_efficientnetv2_s_in21k(pretrained=False, **kwargs):
""" EfficientNet-V2 Small w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
"""
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnetv2_s('tf_efficientnetv2_s_21k', pretrained=pretrained, **kwargs)
model = _gen_efficientnetv2_s('tf_efficientnetv2_s_in21k', pretrained=pretrained, **kwargs)
return model
@register_model
def tf_efficientnetv2_m_21k(pretrained=False, **kwargs):
def tf_efficientnetv2_m_in21k(pretrained=False, **kwargs):
""" EfficientNet-V2 Medium w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
"""
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnetv2_m('tf_efficientnetv2_m_21k', pretrained=pretrained, **kwargs)
model = _gen_efficientnetv2_m('tf_efficientnetv2_m_in21k', pretrained=pretrained, **kwargs)
return model
@register_model
def tf_efficientnetv2_l_21k(pretrained=False, **kwargs):
def tf_efficientnetv2_l_in21k(pretrained=False, **kwargs):
""" EfficientNet-V2 Large w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
"""
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnetv2_l('tf_efficientnetv2_l_21k', pretrained=pretrained, **kwargs)
model = _gen_efficientnetv2_l('tf_efficientnetv2_l_in21k', pretrained=pretrained, **kwargs)
return model

@ -237,7 +237,11 @@ def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='c
def decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil', experts_multiplier=1, fix_first_last=False):
arch_args = []
for stack_idx, block_strings in enumerate(arch_def):
if isinstance(depth_multiplier, tuple):
assert len(depth_multiplier) == len(arch_def)
else:
depth_multiplier = (depth_multiplier,) * len(arch_def)
for stack_idx, (block_strings, multiplier) in enumerate(zip(arch_def, depth_multiplier)):
assert isinstance(block_strings, list)
stack_args = []
repeats = []
@ -251,7 +255,7 @@ def decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil', experts_
if fix_first_last and (stack_idx == 0 or stack_idx == len(arch_def) - 1):
arch_args.append(_scale_stage_depth(stack_args, repeats, 1.0, depth_trunc))
else:
arch_args.append(_scale_stage_depth(stack_args, repeats, depth_multiplier, depth_trunc))
arch_args.append(_scale_stage_depth(stack_args, repeats, multiplier, depth_trunc))
return arch_args

@ -21,7 +21,7 @@ from .inplace_abn import InplaceAbn
from .involution import Involution
from .linear import Linear
from .mixed_conv2d import MixedConv2d
from .mlp import Mlp, GluMlp
from .mlp import Mlp, GluMlp, GatedMlp
from .norm import GroupNorm
from .norm_act import BatchNormAct2d, GroupNormAct
from .padding import get_padding, get_same_padding, pad_same

@ -34,9 +34,10 @@ class GluMlp(nn.Module):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features * 2)
assert hidden_features % 2 == 0
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.fc2 = nn.Linear(hidden_features // 2, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
@ -47,3 +48,32 @@ class GluMlp(nn.Module):
x = self.fc2(x)
x = self.drop(x)
return x
class GatedMlp(nn.Module):
""" MLP as used in gMLP
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
gate_layer=None, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
if gate_layer is not None:
assert hidden_features % 2 == 0
self.gate = gate_layer(hidden_features)
hidden_features = hidden_features // 2 # FIXME base reduction on gate property?
else:
self.gate = nn.Identity()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.gate(x)
x = self.fc2(x)
x = self.drop(x)
return x

@ -1,4 +1,6 @@
""" MLP-Mixer in PyTorch
""" MLP-Mixer, ResMLP, and gMLP in PyTorch
This impl originally based on MLP-Mixer paper.
Official JAX impl: https://github.com/google-research/vision_transformer/blob/linen/vit_jax/models_mixer.py
@ -12,6 +14,25 @@ Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2
year={2021}
}
Also supporting preliminary (not verified) implementations of ResMlp, gMLP, and possibly more...
Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404
@misc{touvron2021resmlp,
title={ResMLP: Feedforward networks for image classification with data-efficient training},
author={Hugo Touvron and Piotr Bojanowski and Mathilde Caron and Matthieu Cord and Alaaeldin El-Nouby and
Edouard Grave and Armand Joulin and Gabriel Synnaeve and Jakob Verbeek and Hervé Jégou},
year={2021},
eprint={2105.03404},
}
Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050
@misc{liu2021pay,
title={Pay Attention to MLPs},
author={Hanxiao Liu and Zihang Dai and David R. So and Quoc V. Le},
year={2021},
eprint={2105.08050},
}
A thank you to paper authors for releasing code and weights.
Hacked together by / Copyright 2021 Ross Wightman
@ -25,7 +46,7 @@ import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg, overlay_external_default_cfg
from .layers import PatchEmbed, Mlp, GluMlp, DropPath, lecun_normal_
from .layers import PatchEmbed, Mlp, GluMlp, GatedMlp, DropPath, lecun_normal_, to_2tuple
from .registry import register_model
@ -43,7 +64,6 @@ def _cfg(url='', **kwargs):
default_cfgs = dict(
mixer_s32_224=_cfg(),
mixer_s16_224=_cfg(),
mixer_s16_glu_224=_cfg(),
mixer_b32_224=_cfg(),
mixer_b16_224=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_b16_224-76587d61.pth',
@ -60,15 +80,38 @@ default_cfgs = dict(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_l16_224_in21k-846aa33c.pth',
num_classes=21843
),
# Mixer ImageNet-21K-P pretraining
mixer_b16_224_miil_in21k=_cfg(
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/mixer_b16_224_miil_in21k.pth',
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221,
),
mixer_b16_224_miil=_cfg(
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/mixer_b16_224_miil.pth',
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear',
),
gmixer_12_224=_cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
gmixer_24_224=_cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
resmlp_12_224=_cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
resmlp_24_224=_cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
resmlp_36_224=_cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
gmlp_ti16_224=_cfg(),
gmlp_s16_224=_cfg(),
gmlp_b16_224=_cfg(),
)
class MixerBlock(nn.Module):
""" Residual Block w/ token mixing and channel MLPs
Based on: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601
"""
def __init__(
self, dim, seq_len, tokens_dim, channels_dim,
mlp_layer=Mlp, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop=0., drop_path=0.):
self, dim, seq_len, mlp_ratio=(0.5, 4.0), mlp_layer=Mlp,
norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop=0., drop_path=0.):
super().__init__()
tokens_dim, channels_dim = [int(x * dim) for x in to_2tuple(mlp_ratio)]
self.norm1 = norm_layer(dim)
self.mlp_tokens = mlp_layer(seq_len, tokens_dim, act_layer=act_layer, drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
@ -81,6 +124,78 @@ class MixerBlock(nn.Module):
return x
class Affine(nn.Module):
def __init__(self, dim):
super().__init__()
self.alpha = nn.Parameter(torch.ones((1, 1, dim)))
self.beta = nn.Parameter(torch.zeros((1, 1, dim)))
def forward(self, x):
return torch.addcmul(self.beta, self.alpha, x)
class ResBlock(nn.Module):
""" Residual MLP block w/ LayerScale and Affine 'norm'
Based on: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404
"""
def __init__(
self, dim, seq_len, mlp_ratio=4, mlp_layer=Mlp, norm_layer=Affine,
act_layer=nn.GELU, init_values=1e-4, drop=0., drop_path=0.):
super().__init__()
channel_dim = int(dim * mlp_ratio)
self.norm1 = norm_layer(dim)
self.linear_tokens = nn.Linear(seq_len, seq_len)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp_channels = mlp_layer(dim, channel_dim, act_layer=act_layer, drop=drop)
self.ls1 = nn.Parameter(init_values * torch.ones(dim))
self.ls2 = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
x = x + self.drop_path(self.ls1 * self.linear_tokens(self.norm1(x).transpose(1, 2)).transpose(1, 2))
x = x + self.drop_path(self.ls2 * self.mlp_channels(self.norm2(x)))
return x
class SpatialGatingUnit(nn.Module):
""" Spatial Gating Unit
Based on: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050
"""
def __init__(self, dim, seq_len, norm_layer=nn.LayerNorm):
super().__init__()
gate_dim = dim // 2
self.norm = norm_layer(gate_dim)
self.proj = nn.Linear(seq_len, seq_len)
def forward(self, x):
u, v = x.chunk(2, dim=-1)
v = self.norm(v)
v = self.proj(v.transpose(-1, -2))
return u * v.transpose(-1, -2)
class SpatialGatingBlock(nn.Module):
""" Residual Block w/ Spatial Gating
Based on: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050
"""
def __init__(
self, dim, seq_len, mlp_ratio=4, mlp_layer=GatedMlp,
norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop=0., drop_path=0.):
super().__init__()
channel_dim = int(dim * mlp_ratio)
self.norm = norm_layer(dim)
sgu = partial(SpatialGatingUnit, seq_len=seq_len)
self.mlp_channels = mlp_layer(dim, channel_dim, act_layer=act_layer, gate_layer=sgu, drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.mlp_channels(self.norm(x)))
return x
class MlpMixer(nn.Module):
def __init__(
@ -91,24 +206,27 @@ class MlpMixer(nn.Module):
patch_size=16,
num_blocks=8,
hidden_dim=512,
tokens_dim=256,
channels_dim=2048,
mlp_ratio=(0.5, 4.0),
block_layer=MixerBlock,
mlp_layer=Mlp,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
act_layer=nn.GELU,
drop=0.,
drop_path=0.,
drop_rate=0.,
drop_path_rate=0.,
nlhb=False,
stem_norm=False,
):
super().__init__()
self.num_classes = num_classes
self.stem = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=hidden_dim)
# FIXME drop_path (stochastic depth scaling rule?)
self.stem = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=hidden_dim,
norm_layer=norm_layer if stem_norm else None)
# FIXME drop_path (stochastic depth scaling rule or all the same?)
self.blocks = nn.Sequential(*[
MixerBlock(
hidden_dim, self.stem.num_patches, tokens_dim, channels_dim,
mlp_layer=mlp_layer, norm_layer=norm_layer, act_layer=act_layer, drop=drop, drop_path=drop_path)
block_layer(
hidden_dim, self.stem.num_patches, mlp_ratio, mlp_layer=mlp_layer, norm_layer=norm_layer,
act_layer=act_layer, drop=drop_rate, drop_path=drop_path_rate)
for _ in range(num_blocks)])
self.norm = norm_layer(hidden_dim)
self.head = nn.Linear(hidden_dim, self.num_classes) # zero init
@ -136,6 +254,9 @@ def _init_weights(m, n: str, head_bias: float = 0.):
if n.startswith('head'):
nn.init.zeros_(m.weight)
nn.init.constant_(m.bias, head_bias)
elif n.endswith('gate.proj'):
nn.init.normal_(m.weight, std=1e-4)
nn.init.ones_(m.bias)
else:
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
@ -177,8 +298,9 @@ def _create_mixer(variant, pretrained=False, default_cfg=None, **kwargs):
@register_model
def mixer_s32_224(pretrained=False, **kwargs):
""" Mixer-S/32 224x224
Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601
"""
model_args = dict(patch_size=32, num_blocks=8, hidden_dim=512, tokens_dim=256, channels_dim=2048, **kwargs)
model_args = dict(patch_size=32, num_blocks=8, hidden_dim=512, **kwargs)
model = _create_mixer('mixer_s32_224', pretrained=pretrained, **model_args)
return model
@ -186,28 +308,19 @@ def mixer_s32_224(pretrained=False, **kwargs):
@register_model
def mixer_s16_224(pretrained=False, **kwargs):
""" Mixer-S/16 224x224
Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601
"""
model_args = dict(patch_size=16, num_blocks=8, hidden_dim=512, tokens_dim=256, channels_dim=2048, **kwargs)
model_args = dict(patch_size=16, num_blocks=8, hidden_dim=512, **kwargs)
model = _create_mixer('mixer_s16_224', pretrained=pretrained, **model_args)
return model
@register_model
def mixer_s16_glu_224(pretrained=False, **kwargs):
""" Mixer-S/16 224x224
"""
model_args = dict(
patch_size=16, num_blocks=8, hidden_dim=512, tokens_dim=256, channels_dim=1536,
mlp_layer=GluMlp, act_layer=nn.SiLU, **kwargs)
model = _create_mixer('mixer_s16_glu_224', pretrained=pretrained, **model_args)
return model
@register_model
def mixer_b32_224(pretrained=False, **kwargs):
""" Mixer-B/32 224x224
Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601
"""
model_args = dict(patch_size=32, num_blocks=12, hidden_dim=768, tokens_dim=384, channels_dim=3072, **kwargs)
model_args = dict(patch_size=32, num_blocks=12, hidden_dim=768, **kwargs)
model = _create_mixer('mixer_b32_224', pretrained=pretrained, **model_args)
return model
@ -215,8 +328,9 @@ def mixer_b32_224(pretrained=False, **kwargs):
@register_model
def mixer_b16_224(pretrained=False, **kwargs):
""" Mixer-B/16 224x224. ImageNet-1k pretrained weights.
Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601
"""
model_args = dict(patch_size=16, num_blocks=12, hidden_dim=768, tokens_dim=384, channels_dim=3072, **kwargs)
model_args = dict(patch_size=16, num_blocks=12, hidden_dim=768, **kwargs)
model = _create_mixer('mixer_b16_224', pretrained=pretrained, **model_args)
return model
@ -224,8 +338,9 @@ def mixer_b16_224(pretrained=False, **kwargs):
@register_model
def mixer_b16_224_in21k(pretrained=False, **kwargs):
""" Mixer-B/16 224x224. ImageNet-21k pretrained weights.
Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601
"""
model_args = dict(patch_size=16, num_blocks=12, hidden_dim=768, tokens_dim=384, channels_dim=3072, **kwargs)
model_args = dict(patch_size=16, num_blocks=12, hidden_dim=768, **kwargs)
model = _create_mixer('mixer_b16_224_in21k', pretrained=pretrained, **model_args)
return model
@ -233,8 +348,9 @@ def mixer_b16_224_in21k(pretrained=False, **kwargs):
@register_model
def mixer_l32_224(pretrained=False, **kwargs):
""" Mixer-L/32 224x224.
Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601
"""
model_args = dict(patch_size=32, num_blocks=24, hidden_dim=1024, tokens_dim=512, channels_dim=4096, **kwargs)
model_args = dict(patch_size=32, num_blocks=24, hidden_dim=1024, **kwargs)
model = _create_mixer('mixer_l32_224', pretrained=pretrained, **model_args)
return model
@ -242,8 +358,9 @@ def mixer_l32_224(pretrained=False, **kwargs):
@register_model
def mixer_l16_224(pretrained=False, **kwargs):
""" Mixer-L/16 224x224. ImageNet-1k pretrained weights.
Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601
"""
model_args = dict(patch_size=16, num_blocks=24, hidden_dim=1024, tokens_dim=512, channels_dim=4096, **kwargs)
model_args = dict(patch_size=16, num_blocks=24, hidden_dim=1024, **kwargs)
model = _create_mixer('mixer_l16_224', pretrained=pretrained, **model_args)
return model
@ -251,7 +368,118 @@ def mixer_l16_224(pretrained=False, **kwargs):
@register_model
def mixer_l16_224_in21k(pretrained=False, **kwargs):
""" Mixer-L/16 224x224. ImageNet-21k pretrained weights.
Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601
"""
model_args = dict(patch_size=16, num_blocks=24, hidden_dim=1024, tokens_dim=512, channels_dim=4096, **kwargs)
model_args = dict(patch_size=16, num_blocks=24, hidden_dim=1024, **kwargs)
model = _create_mixer('mixer_l16_224_in21k', pretrained=pretrained, **model_args)
return model
@register_model
def mixer_b16_224_miil(pretrained=False, **kwargs):
""" Mixer-B/16 224x224. ImageNet-21k pretrained weights.
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
"""
model_args = dict(patch_size=16, num_blocks=12, hidden_dim=768, **kwargs)
model = _create_mixer('mixer_b16_224_miil', pretrained=pretrained, **model_args)
return model
@register_model
def mixer_b16_224_miil_in21k(pretrained=False, **kwargs):
""" Mixer-B/16 224x224. ImageNet-1k pretrained weights.
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
"""
model_args = dict(patch_size=16, num_blocks=12, hidden_dim=768, **kwargs)
model = _create_mixer('mixer_b16_224_miil_in21k', pretrained=pretrained, **model_args)
return model
@register_model
def gmixer_12_224(pretrained=False, **kwargs):
""" Glu-Mixer-12 224x224 (short & fat)
Experiment by Ross Wightman, adding (Si)GLU to MLP-Mixer
"""
model_args = dict(
patch_size=20, num_blocks=12, hidden_dim=512, mlp_ratio=(1.0, 6.0),
mlp_layer=GluMlp, act_layer=nn.SiLU, **kwargs)
model = _create_mixer('gmixer_12_224', pretrained=pretrained, **model_args)
return model
@register_model
def gmixer_24_224(pretrained=False, **kwargs):
""" Glu-Mixer-24 224x224 (tall & slim)
Experiment by Ross Wightman, adding (Si)GLU to MLP-Mixer
"""
model_args = dict(
patch_size=20, num_blocks=24, hidden_dim=384, mlp_ratio=(1.0, 6.0),
mlp_layer=GluMlp, act_layer=nn.SiLU, **kwargs)
model = _create_mixer('gmixer_24_224', pretrained=pretrained, **model_args)
return model
@register_model
def resmlp_12_224(pretrained=False, **kwargs):
""" ResMLP-12
Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404
"""
model_args = dict(
patch_size=16, num_blocks=12, hidden_dim=384, mlp_ratio=4, block_layer=ResBlock, norm_layer=Affine, **kwargs)
model = _create_mixer('resmlp_12_224', pretrained=pretrained, **model_args)
return model
@register_model
def resmlp_24_224(pretrained=False, **kwargs):
""" ResMLP-24
Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404
"""
model_args = dict(
patch_size=16, num_blocks=24, hidden_dim=384, mlp_ratio=4, block_layer=ResBlock, norm_layer=Affine, **kwargs)
model = _create_mixer('resmlp_24_224', pretrained=pretrained, **model_args)
return model
@register_model
def resmlp_36_224(pretrained=False, **kwargs):
""" ResMLP-36
Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404
"""
model_args = dict(
patch_size=16, num_blocks=36, hidden_dim=384, mlp_ratio=4, block_layer=ResBlock, norm_layer=Affine, **kwargs)
model = _create_mixer('resmlp_36_224', pretrained=pretrained, **model_args)
return model
@register_model
def gmlp_ti16_224(pretrained=False, **kwargs):
""" gMLP-Tiny
Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050
"""
model_args = dict(
patch_size=16, num_blocks=30, hidden_dim=128, mlp_ratio=6, block_layer=SpatialGatingBlock,
mlp_layer=GatedMlp, **kwargs)
model = _create_mixer('gmlp_ti16_224', pretrained=pretrained, **model_args)
return model
@register_model
def gmlp_s16_224(pretrained=False, **kwargs):
""" gMLP-Small
Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050
"""
model_args = dict(
patch_size=16, num_blocks=30, hidden_dim=256, mlp_ratio=6, block_layer=SpatialGatingBlock,
mlp_layer=GatedMlp, **kwargs)
model = _create_mixer('gmlp_s16_224', pretrained=pretrained, **model_args)
return model
@register_model
def gmlp_b16_224(pretrained=False, **kwargs):
""" gMLP-Base
Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050
"""
model_args = dict(
patch_size=16, num_blocks=30, hidden_dim=512, mlp_ratio=6, block_layer=SpatialGatingBlock,
mlp_layer=GatedMlp, **kwargs)
model = _create_mixer('gmlp_b16_224', pretrained=pretrained, **model_args)
return model

@ -14,7 +14,9 @@ from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import Mlp, DropPath, trunc_normal_
from timm.models.layers.helpers import to_2tuple
from timm.models.registry import register_model
from timm.models.vision_transformer import resize_pos_embed
def _cfg(url='', **kwargs):
@ -118,11 +120,15 @@ class PixelEmbed(nn.Module):
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4):
super().__init__()
num_patches = (img_size // patch_size) ** 2
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
# grid_size property necessary for resizing positional embedding
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
num_patches = (self.grid_size[0]) * (self.grid_size[1])
self.img_size = img_size
self.num_patches = num_patches
self.in_dim = in_dim
new_patch_size = math.ceil(patch_size / stride)
new_patch_size = [math.ceil(ps / stride) for ps in patch_size]
self.new_patch_size = new_patch_size
self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride)
@ -130,11 +136,11 @@ class PixelEmbed(nn.Module):
def forward(self, x, pixel_pos):
B, C, H, W = x.shape
assert H == self.img_size and W == self.img_size, \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size}*{self.img_size})."
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
x = self.unfold(x)
x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size, self.new_patch_size)
x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])
x = x + pixel_pos
x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2)
return x
@ -155,7 +161,7 @@ class TNT(nn.Module):
num_patches = self.pixel_embed.num_patches
self.num_patches = num_patches
new_patch_size = self.pixel_embed.new_patch_size
num_pixel = new_patch_size ** 2
num_pixel = new_patch_size[0] * new_patch_size[1]
self.norm1_proj = norm_layer(num_pixel * in_dim)
self.proj = nn.Linear(num_pixel * in_dim, embed_dim)
@ -163,7 +169,7 @@ class TNT(nn.Module):
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.patch_pos = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pixel_pos = nn.Parameter(torch.zeros(1, in_dim, new_patch_size, new_patch_size))
self.pixel_pos = nn.Parameter(torch.zeros(1, in_dim, new_patch_size[0], new_patch_size[1]))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
@ -224,6 +230,14 @@ class TNT(nn.Module):
return x
def checkpoint_filter_fn(state_dict, model):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
if state_dict['patch_pos'].shape != model.patch_pos.shape:
state_dict['patch_pos'] = resize_pos_embed(state_dict['patch_pos'],
model.patch_pos, getattr(model, 'num_tokens', 1), model.pixel_embed.grid_size)
return state_dict
@register_model
def tnt_s_patch16_224(pretrained=False, **kwargs):
model = TNT(patch_size=16, embed_dim=384, in_dim=24, depth=12, num_heads=6, in_num_head=4,
@ -231,7 +245,8 @@ def tnt_s_patch16_224(pretrained=False, **kwargs):
model.default_cfg = default_cfgs['tnt_s_patch16_224']
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3),
filter_fn=checkpoint_filter_fn)
return model

@ -0,0 +1,431 @@
""" Twins
A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers`
- https://arxiv.org/pdf/2104.13840.pdf
Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below
"""
# --------------------------------------------------------
# Twins
# Copyright (c) 2021 Meituan
# Licensed under The Apache 2.0 License [see LICENSE for details]
# Written by Xinjie Li, Xiangxiang Chu
# --------------------------------------------------------
import math
from copy import deepcopy
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .layers import Mlp, DropPath, to_2tuple, trunc_normal_
from .registry import register_model
from .vision_transformer import Attention
from .helpers import build_model_with_cfg, overlay_external_default_cfg
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'twins_pcpvt_small': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_small-e70e7e7a.pth',
),
'twins_pcpvt_base': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_base-e5ecb09b.pth',
),
'twins_pcpvt_large': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_large-d273f802.pth',
),
'twins_svt_small': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_small-42e5f78c.pth',
),
'twins_svt_base': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_base-c2265010.pth',
),
'twins_svt_large': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_large-90f6aaa9.pth',
),
}
Size_ = Tuple[int, int]
class LocallyGroupedAttn(nn.Module):
""" LSA: self attention within a group
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1):
assert ws != 1
super(LocallyGroupedAttn, self).__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.ws = ws
def forward(self, x, size: Size_):
# There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
# both. You can choose any one, we recommend forward_padding because it's neat. However,
# the masking implementation is more reasonable and accurate.
B, N, C = x.shape
H, W = size
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.ws - W % self.ws) % self.ws
pad_b = (self.ws - H % self.ws) % self.ws
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
_h, _w = Hp // self.ws, Wp // self.ws
x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
qkv = self.qkv(x).reshape(
B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
# def forward_mask(self, x, size: Size_):
# B, N, C = x.shape
# H, W = size
# x = x.view(B, H, W, C)
# pad_l = pad_t = 0
# pad_r = (self.ws - W % self.ws) % self.ws
# pad_b = (self.ws - H % self.ws) % self.ws
# x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
# _, Hp, Wp, _ = x.shape
# _h, _w = Hp // self.ws, Wp // self.ws
# mask = torch.zeros((1, Hp, Wp), device=x.device)
# mask[:, -pad_b:, :].fill_(1)
# mask[:, :, -pad_r:].fill_(1)
#
# x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) # B, _h, _w, ws, ws, C
# mask = mask.reshape(1, _h, self.ws, _w, self.ws).transpose(2, 3).reshape(1, _h * _w, self.ws * self.ws)
# attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3) # 1, _h*_w, ws*ws, ws*ws
# attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-1000.0)).masked_fill(attn_mask == 0, float(0.0))
# qkv = self.qkv(x).reshape(
# B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
# # n_h, B, _w*_h, nhead, ws*ws, dim
# q, k, v = qkv[0], qkv[1], qkv[2] # B, _h*_w, n_head, ws*ws, dim_head
# attn = (q @ k.transpose(-2, -1)) * self.scale # B, _h*_w, n_head, ws*ws, ws*ws
# attn = attn + attn_mask.unsqueeze(2)
# attn = attn.softmax(dim=-1)
# attn = self.attn_drop(attn) # attn @v -> B, _h*_w, n_head, ws*ws, dim_head
# attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
# x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
# if pad_r > 0 or pad_b > 0:
# x = x[:, :H, :W, :].contiguous()
# x = x.reshape(B, N, C)
# x = self.proj(x)
# x = self.proj_drop(x)
# return x
class GlobalSubSampleAttn(nn.Module):
""" GSA: using a key to summarize the information for a group to be efficient.
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=True)
self.kv = nn.Linear(dim, dim * 2, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
else:
self.sr = None
self.norm = None
def forward(self, x, size: Size_):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.sr is not None:
x = x.permute(0, 2, 1).reshape(B, C, *size)
x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1)
x = self.norm(x)
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=None):
super().__init__()
self.norm1 = norm_layer(dim)
if ws is None:
self.attn = Attention(dim, num_heads, False, None, attn_drop, drop)
elif ws == 1:
self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, drop, sr_ratio)
else:
self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, drop, ws)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, size: Size_):
x = x + self.drop_path(self.attn(self.norm1(x), size))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PosConv(nn.Module):
# PEG from https://arxiv.org/abs/2102.10882
def __init__(self, in_chans, embed_dim=768, stride=1):
super(PosConv, self).__init__()
self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim), )
self.stride = stride
def forward(self, x, size: Size_):
B, N, C = x.shape
cnn_feat_token = x.transpose(1, 2).view(B, C, *size)
x = self.proj(cnn_feat_token)
if self.stride == 1:
x += cnn_feat_token
x = x.flatten(2).transpose(1, 2)
return x
def no_weight_decay(self):
return ['proj.%d.weight' % i for i in range(4)]
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
f"img_size {img_size} should be divided by patch_size {patch_size}."
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x) -> Tuple[torch.Tensor, Size_]:
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
x = self.norm(x)
out_size = (H // self.patch_size[0], W // self.patch_size[1])
return x, out_size
class Twins(nn.Module):
""" Twins Vision Transfomer (Revisiting Spatial Attention)
Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git
"""
def __init__(
self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=(64, 128, 256, 512),
num_heads=(1, 2, 4, 8), mlp_ratios=(4, 4, 4, 4), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=(3, 4, 6, 3), sr_ratios=(8, 4, 2, 1), wss=None,
block_cls=Block):
super().__init__()
self.num_classes = num_classes
self.depths = depths
img_size = to_2tuple(img_size)
prev_chs = in_chans
self.patch_embeds = nn.ModuleList()
self.pos_drops = nn.ModuleList()
for i in range(len(depths)):
self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i]))
self.pos_drops.append(nn.Dropout(p=drop_rate))
prev_chs = embed_dims[i]
img_size = tuple(t // patch_size for t in img_size)
patch_size = 2
self.blocks = nn.ModuleList()
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
for k in range(len(depths)):
_block = nn.ModuleList([block_cls(
dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[k],
ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])])
self.blocks.append(_block)
cur += depths[k]
self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims])
self.norm = norm_layer(embed_dims[-1])
# classification head
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
# init weights
self.apply(self._init_weights)
@torch.jit.ignore
def no_weight_decay(self):
return set(['pos_block.' + n for n, p in self.pos_block.named_parameters()])
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def forward_features(self, x):
B = x.shape[0]
for i, (embed, drop, blocks, pos_blk) in enumerate(
zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)):
x, size = embed(x)
x = drop(x)
for j, blk in enumerate(blocks):
x = blk(x, size)
if j == 0:
x = pos_blk(x, size) # PEG here
if i < len(self.depths) - 1:
x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous()
x = self.norm(x)
return x.mean(dim=1) # GAP here
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _create_twins(variant, pretrained=False, default_cfg=None, **kwargs):
if default_cfg is None:
default_cfg = deepcopy(default_cfgs[variant])
overlay_external_default_cfg(default_cfg, kwargs)
default_num_classes = default_cfg['num_classes']
default_img_size = default_cfg['input_size'][-2:]
num_classes = kwargs.pop('num_classes', default_num_classes)
img_size = kwargs.pop('img_size', default_img_size)
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
model = build_model_with_cfg(
Twins, variant, pretrained,
default_cfg=default_cfg,
img_size=img_size,
num_classes=num_classes,
**kwargs)
return model
@register_model
def twins_pcpvt_small(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_pcpvt_small', pretrained=pretrained, **model_kwargs)
@register_model
def twins_pcpvt_base(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_pcpvt_base', pretrained=pretrained, **model_kwargs)
@register_model
def twins_pcpvt_large(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_pcpvt_large', pretrained=pretrained, **model_kwargs)
@register_model
def twins_svt_small(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4],
depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_svt_small', pretrained=pretrained, **model_kwargs)
@register_model
def twins_svt_base(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4],
depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_svt_base', pretrained=pretrained, **model_kwargs)
@register_model
def twins_svt_large(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4],
depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs)

@ -352,7 +352,7 @@ def _init_vit_weights(m, n: str = '', head_bias: float = 0., jax_impl: bool = Fa
nn.init.ones_(m.weight)
def resize_pos_embed(posemb, posemb_new, num_tokens=1):
def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
@ -363,11 +363,13 @@ def resize_pos_embed(posemb, posemb_new, num_tokens=1):
else:
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid)))
gs_new = int(math.sqrt(ntok_new))
_logger.info('Position embedding grid-size from %s to %s', gs_old, gs_new)
if not len(gs_new): # backwards compatibility
gs_new = [int(math.sqrt(ntok_new))] * 2
assert len(gs_new) >= 2
_logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new)
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear')
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1)
posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bilinear')
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
@ -385,7 +387,8 @@ def checkpoint_filter_fn(state_dict, model):
v = v.reshape(O, -1, H, W)
elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
# To resize pos embedding when using model at different size from pretrained weights
v = resize_pos_embed(v, model.pos_embed, getattr(model, 'num_tokens', 1))
v = resize_pos_embed(v, model.pos_embed, getattr(model, 'num_tokens', 1),
model.patch_embed.grid_size)
out_dict[k] = v
return out_dict

Loading…
Cancel
Save