Add BeiT 'finetuned' 1k weights and pretrained 22k weights, pretraining specific (masked) model excluded for now
parent
f8a215cfe6
commit
1c9284c640
@ -0,0 +1,420 @@
|
||||
""" BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
|
||||
|
||||
Model from official source: https://github.com/microsoft/unilm/tree/master/beit
|
||||
|
||||
At this point only the 1k fine-tuned classification weights and model configs have been added,
|
||||
see original source above for pre-training models and procedure.
|
||||
|
||||
Modifications by / Copyright 2021 Ross Wightman, original copyrights below
|
||||
"""
|
||||
# --------------------------------------------------------
|
||||
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
|
||||
# Github source: https://github.com/microsoft/unilm/tree/master/beit
|
||||
# Copyright (c) 2021 Microsoft
|
||||
# Licensed under The MIT License [see LICENSE for details]
|
||||
# By Hangbo Bao
|
||||
# Based on timm and DeiT code bases
|
||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
||||
# https://github.com/facebookresearch/deit/
|
||||
# https://github.com/facebookresearch/dino
|
||||
# --------------------------------------------------------'
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .helpers import build_model_with_cfg
|
||||
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_
|
||||
from .registry import register_model
|
||||
from .vision_transformer import checkpoint_filter_fn
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
||||
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
||||
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
|
||||
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = {
|
||||
'beit_base_patch16_224': _cfg(
|
||||
url='https://unilm.blob.core.windows.net/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth'),
|
||||
'beit_base_patch16_384': _cfg(
|
||||
url='https://unilm.blob.core.windows.net/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth',
|
||||
input_size=(3, 384, 384), crop_pct=1.0,
|
||||
),
|
||||
'beit_base_patch16_224_in22k': _cfg(
|
||||
url='https://unilm.blob.core.windows.net/beit/beit_base_patch16_224_pt22k_ft22k.pth',
|
||||
num_classes=21841,
|
||||
),
|
||||
'beit_large_patch16_224': _cfg(
|
||||
url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth'),
|
||||
'beit_large_patch16_384': _cfg(
|
||||
url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth',
|
||||
input_size=(3, 384, 384), crop_pct=1.0,
|
||||
),
|
||||
'beit_large_patch16_512': _cfg(
|
||||
url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth',
|
||||
input_size=(3, 512, 512), crop_pct=1.0,
|
||||
),
|
||||
'beit_large_patch16_224_in22k': _cfg(
|
||||
url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_224_pt22k_ft22k.pth',
|
||||
num_classes=21841,
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self, dim, num_heads=8, qkv_bias=False, attn_drop=0.,
|
||||
proj_drop=0., window_size=None, attn_head_dim=None):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
if attn_head_dim is not None:
|
||||
head_dim = attn_head_dim
|
||||
all_head_dim = head_dim * self.num_heads
|
||||
self.scale = head_dim ** -0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
||||
if qkv_bias:
|
||||
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
||||
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
||||
else:
|
||||
self.q_bias = None
|
||||
self.v_bias = None
|
||||
|
||||
if window_size:
|
||||
self.window_size = window_size
|
||||
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
||||
self.relative_position_bias_table = nn.Parameter(
|
||||
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
||||
# cls to token & token 2 cls & cls to cls
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = torch.arange(window_size[0])
|
||||
coords_w = torch.arange(window_size[1])
|
||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
||||
relative_position_index = \
|
||||
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
||||
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
||||
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
||||
relative_position_index[0, 0] = self.num_relative_distance - 1
|
||||
|
||||
self.register_buffer("relative_position_index", relative_position_index)
|
||||
else:
|
||||
self.window_size = None
|
||||
self.relative_position_bias_table = None
|
||||
self.relative_position_index = None
|
||||
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(all_head_dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x, rel_pos_bias: Optional[torch.Tensor] = None):
|
||||
B, N, C = x.shape
|
||||
qkv_bias = None
|
||||
if self.q_bias is not None:
|
||||
if torch.jit.is_scripting():
|
||||
# FIXME requires_grad breaks w/ torchscript
|
||||
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias), self.v_bias))
|
||||
else:
|
||||
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
||||
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
||||
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
q = q * self.scale
|
||||
attn = (q @ k.transpose(-2, -1))
|
||||
|
||||
if self.relative_position_bias_table is not None:
|
||||
relative_position_bias = \
|
||||
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||
self.window_size[0] * self.window_size[1] + 1,
|
||||
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
||||
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||
attn = attn + relative_position_bias.unsqueeze(0)
|
||||
|
||||
if rel_pos_bias is not None:
|
||||
attn = attn + rel_pos_bias
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
|
||||
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
||||
window_size=None, attn_head_dim=None):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
||||
window_size=window_size, attn_head_dim=attn_head_dim)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
if init_values:
|
||||
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
|
||||
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
|
||||
else:
|
||||
self.gamma_1, self.gamma_2 = None, None
|
||||
|
||||
def forward(self, x, rel_pos_bias: Optional[torch.Tensor] = None):
|
||||
if self.gamma_1 is None:
|
||||
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
||||
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class RelativePositionBias(nn.Module):
|
||||
|
||||
def __init__(self, window_size, num_heads):
|
||||
super().__init__()
|
||||
self.window_size = window_size
|
||||
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
||||
self.relative_position_bias_table = nn.Parameter(
|
||||
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
||||
# cls to token & token 2 cls & cls to cls
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = torch.arange(window_size[0])
|
||||
coords_w = torch.arange(window_size[1])
|
||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
||||
relative_position_index = \
|
||||
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
||||
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
||||
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
||||
relative_position_index[0, 0] = self.num_relative_distance - 1
|
||||
|
||||
self.register_buffer("relative_position_index", relative_position_index)
|
||||
|
||||
# trunc_normal_(self.relative_position_bias_table, std=.02)
|
||||
|
||||
def forward(self):
|
||||
relative_position_bias = \
|
||||
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||
self.window_size[0] * self.window_size[1] + 1,
|
||||
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
||||
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||
|
||||
|
||||
class Beit(nn.Module):
|
||||
""" Vision Transformer with support for patch or hybrid CNN input stage
|
||||
"""
|
||||
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
||||
num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0.,
|
||||
drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=None,
|
||||
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
|
||||
use_mean_pooling=True, init_scale=0.001):
|
||||
super().__init__()
|
||||
self.num_classes = num_classes
|
||||
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
||||
num_patches = self.patch_embed.num_patches
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
if use_abs_pos_emb:
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
||||
else:
|
||||
self.pos_embed = None
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
if use_shared_rel_pos_bias:
|
||||
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.grid_size, num_heads=num_heads)
|
||||
else:
|
||||
self.rel_pos_bias = None
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
self.use_rel_pos_bias = use_rel_pos_bias
|
||||
self.blocks = nn.ModuleList([
|
||||
Block(
|
||||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
||||
init_values=init_values, window_size=self.patch_embed.grid_size if use_rel_pos_bias else None)
|
||||
for i in range(depth)])
|
||||
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
||||
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
||||
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
self.apply(self._init_weights)
|
||||
if self.pos_embed is not None:
|
||||
trunc_normal_(self.pos_embed, std=.02)
|
||||
trunc_normal_(self.cls_token, std=.02)
|
||||
# trunc_normal_(self.mask_token, std=.02)
|
||||
self.fix_init_weight()
|
||||
if isinstance(self.head, nn.Linear):
|
||||
trunc_normal_(self.head.weight, std=.02)
|
||||
self.head.weight.data.mul_(init_scale)
|
||||
self.head.bias.data.mul_(init_scale)
|
||||
|
||||
def fix_init_weight(self):
|
||||
def rescale(param, layer_id):
|
||||
param.div_(math.sqrt(2.0 * layer_id))
|
||||
|
||||
for layer_id, layer in enumerate(self.blocks):
|
||||
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
||||
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
def get_num_layers(self):
|
||||
return len(self.blocks)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'pos_embed', 'cls_token'}
|
||||
|
||||
def get_classifier(self):
|
||||
return self.head
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool=''):
|
||||
self.num_classes = num_classes
|
||||
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.patch_embed(x)
|
||||
batch_size, seq_len, _ = x.size()
|
||||
|
||||
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
if self.pos_embed is not None:
|
||||
x = x + self.pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
||||
for blk in self.blocks:
|
||||
x = blk(x, rel_pos_bias=rel_pos_bias)
|
||||
|
||||
x = self.norm(x)
|
||||
if self.fc_norm is not None:
|
||||
t = x[:, 1:, :]
|
||||
return self.fc_norm(t.mean(1))
|
||||
else:
|
||||
return x[:, 0]
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
|
||||
def _create_beit(variant, pretrained=False, default_cfg=None, **kwargs):
|
||||
default_cfg = default_cfg or default_cfgs[variant]
|
||||
if kwargs.get('features_only', None):
|
||||
raise RuntimeError('features_only not implemented for Beit models.')
|
||||
|
||||
model = build_model_with_cfg(
|
||||
Beit, variant, pretrained,
|
||||
default_cfg=default_cfg,
|
||||
# FIXME an updated filter fn needed to interpolate rel pos emb if fine tuning to diff model sizes
|
||||
pretrained_filter_fn=checkpoint_filter_fn,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def beit_base_patch16_224(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
||||
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
|
||||
model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def beit_base_patch16_384(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
||||
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
|
||||
model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def beit_base_patch16_224_in22k(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
||||
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
|
||||
model = _create_beit('beit_base_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def beit_large_patch16_224(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
||||
model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def beit_large_patch16_384(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
||||
model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def beit_large_patch16_512(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
||||
model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def beit_large_patch16_224_in22k(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
||||
model = _create_beit('beit_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
Loading…
Reference in new issue