This website works better with JavaScript.
Explore
Help
Register
Sign In
Migrations
/
pytorch-image-models
Watch
1
Star
0
Fork
You've already forked pytorch-image-models
0
Code
Issues
Pull Requests
Packages
Projects
Releases
Wiki
Activity
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5e7d47ca10
main
focalnet_and_swin_refactor
fix_window_trace
scaling_vit
dataset_info
levit_efficientformer_redux
norm_mlp_classifier
0.6.x
maxxvit_hub
freeze_norm_revisit
parse_kwargs2
parse_kwargs
gh-pages
convnextv2
multi-weight_effnet_convnext
refactor-imports
eva
multi-weight
update-test-pytorch
bits_and_tpu
script_cleanup
clip_laion2b
more_vit
fix_tests
edgenext_csp_and_more
fixes-syncbn_pretrain_cfg_resolve
swin_v2
vit_relpos_refactor
norm_norm_norm
0.5.x
convnext_and_copyright
more_datasets
fixes_bce_regnet
attn_update
perceiver
vit_and_bit_test_fixes
cleanup_xla_model_fixes
more_attn
hf_hub_revisit
xsepconv
efficientnet_attn
v0.1-attn-weights
v0.1-cadene
v0.1-coat-weights
v0.1-dnf-weights
v0.1-effv2-weights
v0.1-ger-weights
v0.1-hrnet
v0.1-mvit-weights
v0.1-pit-weights
v0.1-regnet
v0.1-repvgg-weights
v0.1-res2net
v0.1-resnest
v0.1-rexnet
v0.1-rs-weights
v0.1-rsb-weights
v0.1-selecsls
v0.1-tpu-weights
v0.1-tresnet
v0.1-vitjx
v0.1-vt3p-weights
v0.1-weights
v0.1-weights-maxx
v0.1-weights-morevit
v0.1-weights-swinv2
v0.1.1
v0.2.1
v0.3.3
v0.3.4
v0.4.12
v0.4.5
v0.4.9
v0.5.4
v0.6.11
v0.6.12
v0.6.5
v0.6.7
v0.8.10dev0
v0.8.13dev0
v0.8.2dev0
v0.8.6dev0
Branches
Tags
${ item.name }
Create tag
${ searchTerm }
Create branch
${ searchTerm }
from '5e7d47ca10'
${ noResults }
pytorch-image-models
/
timm
/
models
/
layers
History
Ross Wightman
7c7ecd2492
Add --use-train-size flag to force use of train input_size (over test input size) for validation. Default test-time pooling to use train input size (fixes issues).
2 years ago
..
__init__.py
…
activations.py
…
activations_jit.py
…
activations_me.py
…
adaptive_avgmax_pool.py
…
attention_pool2d.py
…
blur_pool.py
…
bottleneck_attn.py
…
cbam.py
…
classifier.py
…
cond_conv2d.py
…
config.py
…
conv2d_same.py
…
conv_bn_act.py
…
create_act.py
…
create_attn.py
…
create_conv2d.py
…
create_norm_act.py
…
drop.py
…
eca.py
…
evo_norm.py
…
filter_response_norm.py
…
gather_excite.py
…
global_context.py
…
halo_attn.py
…
helpers.py
…
inplace_abn.py
…
lambda_layer.py
…
linear.py
…
median_pool.py
…
mixed_conv2d.py
…
ml_decoder.py
…
mlp.py
…
non_local_attn.py
…
norm.py
…
norm_act.py
…
padding.py
…
patch_embed.py
…
pool2d_same.py
…
pos_embed.py
…
selective_kernel.py
…
separable_conv.py
…
space_to_depth.py
…
split_attn.py
…
split_batchnorm.py
…
squeeze_excite.py
…
std_conv.py
…
test_time_pool.py
Add --use-train-size flag to force use of train input_size (over test input size) for validation. Default test-time pooling to use train input size (fixes issues).
2 years ago
trace_utils.py
…
weight_init.py
…