Remove some CRLF that made it into TResNet merge

pull/136/head
Ross Wightman 5 years ago
parent 0004f37d25
commit e3a98171b2

@ -1,61 +1,61 @@
import torch
import torch.nn.parallel
import torch.nn as nn
import torch.nn.functional as F
class AntiAliasDownsampleLayer(nn.Module):
def __init__(self, no_jit: bool = False, filt_size: int = 3, stride: int = 2, channels: int = 0):
super(AntiAliasDownsampleLayer, self).__init__()
if no_jit:
self.op = Downsample(filt_size, stride, channels)
else:
self.op = DownsampleJIT(filt_size, stride, channels)
# FIXME I should probably override _apply and clear DownsampleJIT filter cache for .cuda(), .half(), etc calls
def forward(self, x):
return self.op(x)
@torch.jit.script
class DownsampleJIT(object):
def __init__(self, filt_size: int = 3, stride: int = 2, channels: int = 0):
self.stride = stride
self.filt_size = filt_size
self.channels = channels
assert self.filt_size == 3
assert stride == 2
self.filt = {} # lazy init by device for DataParallel compat
def _create_filter(self, like: torch.Tensor):
filt = torch.tensor([1., 2., 1.], dtype=like.dtype, device=like.device)
filt = filt[:, None] * filt[None, :]
filt = filt / torch.sum(filt)
filt = filt[None, None, :, :].repeat((self.channels, 1, 1, 1))
return filt
def __call__(self, input: torch.Tensor):
input_pad = F.pad(input, (1, 1, 1, 1), 'reflect')
filt = self.filt.get(str(input.device), self._create_filter(input))
return F.conv2d(input_pad, filt, stride=2, padding=0, groups=input.shape[1])
class Downsample(nn.Module):
def __init__(self, filt_size=3, stride=2, channels=None):
super(Downsample, self).__init__()
self.filt_size = filt_size
self.stride = stride
self.channels = channels
assert self.filt_size == 3
filt = torch.tensor([1., 2., 1.])
filt = filt[:, None] * filt[None, :]
filt = filt / torch.sum(filt)
# self.filt = filt[None, None, :, :].repeat((self.channels, 1, 1, 1))
self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1)))
def forward(self, input):
input_pad = F.pad(input, (1, 1, 1, 1), 'reflect')
return F.conv2d(input_pad, self.filt, stride=self.stride, padding=0, groups=input.shape[1])
import torch
import torch.nn.parallel
import torch.nn as nn
import torch.nn.functional as F
class AntiAliasDownsampleLayer(nn.Module):
def __init__(self, no_jit: bool = False, filt_size: int = 3, stride: int = 2, channels: int = 0):
super(AntiAliasDownsampleLayer, self).__init__()
if no_jit:
self.op = Downsample(filt_size, stride, channels)
else:
self.op = DownsampleJIT(filt_size, stride, channels)
# FIXME I should probably override _apply and clear DownsampleJIT filter cache for .cuda(), .half(), etc calls
def forward(self, x):
return self.op(x)
@torch.jit.script
class DownsampleJIT(object):
def __init__(self, filt_size: int = 3, stride: int = 2, channels: int = 0):
self.stride = stride
self.filt_size = filt_size
self.channels = channels
assert self.filt_size == 3
assert stride == 2
self.filt = {} # lazy init by device for DataParallel compat
def _create_filter(self, like: torch.Tensor):
filt = torch.tensor([1., 2., 1.], dtype=like.dtype, device=like.device)
filt = filt[:, None] * filt[None, :]
filt = filt / torch.sum(filt)
filt = filt[None, None, :, :].repeat((self.channels, 1, 1, 1))
return filt
def __call__(self, input: torch.Tensor):
input_pad = F.pad(input, (1, 1, 1, 1), 'reflect')
filt = self.filt.get(str(input.device), self._create_filter(input))
return F.conv2d(input_pad, filt, stride=2, padding=0, groups=input.shape[1])
class Downsample(nn.Module):
def __init__(self, filt_size=3, stride=2, channels=None):
super(Downsample, self).__init__()
self.filt_size = filt_size
self.stride = stride
self.channels = channels
assert self.filt_size == 3
filt = torch.tensor([1., 2., 1.])
filt = filt[:, None] * filt[None, :]
filt = filt / torch.sum(filt)
# self.filt = filt[None, None, :, :].repeat((self.channels, 1, 1, 1))
self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1)))
def forward(self, input):
input_pad = F.pad(input, (1, 1, 1, 1), 'reflect')
return F.conv2d(input_pad, self.filt, stride=self.stride, padding=0, groups=input.shape[1])

@ -1,53 +1,53 @@
import torch
import torch.nn as nn
class SpaceToDepth(nn.Module):
def __init__(self, block_size=4):
super().__init__()
assert block_size == 4
self.bs = block_size
def forward(self, x):
N, C, H, W = x.size()
x = x.view(N, C, H // self.bs, self.bs, W // self.bs, self.bs) # (N, C, H//bs, bs, W//bs, bs)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs)
x = x.view(N, C * (self.bs ** 2), H // self.bs, W // self.bs) # (N, C*bs^2, H//bs, W//bs)
return x
@torch.jit.script
class SpaceToDepthJit(object):
def __call__(self, x: torch.Tensor):
# assuming hard-coded that block_size==4 for acceleration
N, C, H, W = x.size()
x = x.view(N, C, H // 4, 4, W // 4, 4) # (N, C, H//bs, bs, W//bs, bs)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs)
x = x.view(N, C * 16, H // 4, W // 4) # (N, C*bs^2, H//bs, W//bs)
return x
class SpaceToDepthModule(nn.Module):
def __init__(self, no_jit=False):
super().__init__()
if not no_jit:
self.op = SpaceToDepthJit()
else:
self.op = SpaceToDepth()
def forward(self, x):
return self.op(x)
class DepthToSpace(nn.Module):
def __init__(self, block_size):
super().__init__()
self.bs = block_size
def forward(self, x):
N, C, H, W = x.size()
x = x.view(N, self.bs, self.bs, C // (self.bs ** 2), H, W) # (N, bs, bs, C//bs^2, H, W)
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # (N, C//bs^2, H, bs, W, bs)
x = x.view(N, C // (self.bs ** 2), H * self.bs, W * self.bs) # (N, C//bs^2, H * bs, W * bs)
return x
import torch
import torch.nn as nn
class SpaceToDepth(nn.Module):
def __init__(self, block_size=4):
super().__init__()
assert block_size == 4
self.bs = block_size
def forward(self, x):
N, C, H, W = x.size()
x = x.view(N, C, H // self.bs, self.bs, W // self.bs, self.bs) # (N, C, H//bs, bs, W//bs, bs)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs)
x = x.view(N, C * (self.bs ** 2), H // self.bs, W // self.bs) # (N, C*bs^2, H//bs, W//bs)
return x
@torch.jit.script
class SpaceToDepthJit(object):
def __call__(self, x: torch.Tensor):
# assuming hard-coded that block_size==4 for acceleration
N, C, H, W = x.size()
x = x.view(N, C, H // 4, 4, W // 4, 4) # (N, C, H//bs, bs, W//bs, bs)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs)
x = x.view(N, C * 16, H // 4, W // 4) # (N, C*bs^2, H//bs, W//bs)
return x
class SpaceToDepthModule(nn.Module):
def __init__(self, no_jit=False):
super().__init__()
if not no_jit:
self.op = SpaceToDepthJit()
else:
self.op = SpaceToDepth()
def forward(self, x):
return self.op(x)
class DepthToSpace(nn.Module):
def __init__(self, block_size):
super().__init__()
self.bs = block_size
def forward(self, x):
N, C, H, W = x.size()
x = x.view(N, self.bs, self.bs, C // (self.bs ** 2), H, W) # (N, bs, bs, C//bs^2, H, W)
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # (N, C//bs^2, H, bs, W, bs)
x = x.view(N, C // (self.bs ** 2), H * self.bs, W * self.bs) # (N, C//bs^2, H * bs, W * bs)
return x

Loading…
Cancel
Save