|
|
|
@ -256,8 +256,9 @@ class EvoNorm2dS0a(EvoNorm2dS0):
|
|
|
|
|
class EvoNorm2dS1(nn.Module):
|
|
|
|
|
def __init__(
|
|
|
|
|
self, num_features, groups=32, group_size=None,
|
|
|
|
|
apply_act=True, act_layer=nn.SiLU, eps=1e-5, **_):
|
|
|
|
|
apply_act=True, act_layer=None, eps=1e-5, **_):
|
|
|
|
|
super().__init__()
|
|
|
|
|
act_layer = act_layer or nn.SiLU
|
|
|
|
|
self.apply_act = apply_act # apply activation (non-linearity)
|
|
|
|
|
if act_layer is not None and apply_act:
|
|
|
|
|
self.act = create_act_layer(act_layer)
|
|
|
|
@ -290,7 +291,7 @@ class EvoNorm2dS1(nn.Module):
|
|
|
|
|
class EvoNorm2dS1a(EvoNorm2dS1):
|
|
|
|
|
def __init__(
|
|
|
|
|
self, num_features, groups=32, group_size=None,
|
|
|
|
|
apply_act=True, act_layer=nn.SiLU, eps=1e-3, **_):
|
|
|
|
|
apply_act=True, act_layer=None, eps=1e-3, **_):
|
|
|
|
|
super().__init__(
|
|
|
|
|
num_features, groups=groups, group_size=group_size, apply_act=apply_act, act_layer=act_layer, eps=eps)
|
|
|
|
|
|
|
|
|
@ -305,8 +306,9 @@ class EvoNorm2dS1a(EvoNorm2dS1):
|
|
|
|
|
class EvoNorm2dS2(nn.Module):
|
|
|
|
|
def __init__(
|
|
|
|
|
self, num_features, groups=32, group_size=None,
|
|
|
|
|
apply_act=True, act_layer=nn.SiLU, eps=1e-5, **_):
|
|
|
|
|
apply_act=True, act_layer=None, eps=1e-5, **_):
|
|
|
|
|
super().__init__()
|
|
|
|
|
act_layer = act_layer or nn.SiLU
|
|
|
|
|
self.apply_act = apply_act # apply activation (non-linearity)
|
|
|
|
|
if act_layer is not None and apply_act:
|
|
|
|
|
self.act = create_act_layer(act_layer)
|
|
|
|
@ -338,7 +340,7 @@ class EvoNorm2dS2(nn.Module):
|
|
|
|
|
class EvoNorm2dS2a(EvoNorm2dS2):
|
|
|
|
|
def __init__(
|
|
|
|
|
self, num_features, groups=32, group_size=None,
|
|
|
|
|
apply_act=True, act_layer=nn.SiLU, eps=1e-3, **_):
|
|
|
|
|
apply_act=True, act_layer=None, eps=1e-3, **_):
|
|
|
|
|
super().__init__(
|
|
|
|
|
num_features, groups=groups, group_size=group_size, apply_act=apply_act, act_layer=act_layer, eps=eps)
|
|
|
|
|
|
|
|
|
|