You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

213 lines
7.9 KiB

3 years ago
import os
import pickle
import numpy as np
from tqdm import tqdm
from scipy import linalg
from multiprocessing import Pool
from skimage.metrics import structural_similarity
from skimage.metrics import peak_signal_noise_ratio
import torch
from torch.autograd import Variable
from torch.nn.functional import adaptive_avg_pool2d
from .inception import InceptionV3
# ============================
def compare_mae(pairs):
real, fake = pairs
real, fake = real.astype(np.float32), fake.astype(np.float32)
return np.sum(np.abs(real - fake)) / np.sum(real + fake)
def compare_psnr(pairs):
real, fake = pairs
return peak_signal_noise_ratio(real, fake)
def compare_ssim(pairs):
real, fake = pairs
return structural_similarity(real, fake, multichannel=True)
# ================================
def mae(reals, fakes, num_worker=8):
error = 0
pool = Pool(num_worker)
for val in tqdm(pool.imap_unordered(compare_mae, zip(reals, fakes)), total=len(reals), desc='compare_mae'):
error += val
return error / len(reals)
def psnr(reals, fakes, num_worker=8):
error = 0
pool = Pool(num_worker)
for val in tqdm(pool.imap_unordered(compare_psnr, zip(reals, fakes)), total=len(reals), desc='compare_psnr'):
error += val
return error / len(reals)
def ssim(reals, fakes, num_worker=8):
error = 0
pool = Pool(num_worker)
for val in tqdm(pool.imap_unordered(compare_ssim, zip(reals, fakes)), total=len(reals), desc='compare_ssim'):
error += val
return error / len(reals)
def fid(reals, fakes, num_worker=8, real_fid_path=None):
dims = 2048
batch_size = 4
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx]).cuda()
if real_fid_path is None:
real_fid_path = 'places2_fid.pt'
if os.path.isfile(real_fid_path):
data = pickle.load(open(real_fid_path, 'rb'))
real_m, real_s = data['mu'], data['sigma']
else:
reals = (np.array(reals).astype(np.float32) / 255.0).transpose((0, 3, 1, 2))
real_m, real_s = calculate_activation_statistics(reals, model, batch_size, dims)
with open(real_fid_path, 'wb') as f:
pickle.dump({'mu': real_m, 'sigma': real_s}, f)
# calculate fid statistics for fake images
fakes = (np.array(fakes).astype(np.float32) / 255.0).transpose((0, 3, 1, 2))
fake_m, fake_s = calculate_activation_statistics(fakes, model, batch_size, dims)
fid_value = calculate_frechet_distance(real_m, real_s, fake_m, fake_s)
return fid_value
def calculate_activation_statistics(images, model, batch_size=64,
dims=2048, cuda=True, verbose=False):
"""Calculation of the statistics used by the FID.
Params:
-- images : Numpy array of dimension (n_images, 3, hi, wi). The values
must lie between 0 and 1.
-- model : Instance of inception model
-- batch_size : The images numpy array is split into batches with
batch size batch_size. A reasonable batch size
depends on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the
number of calculated batches is reported.
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
"""
act = get_activations(images, model, batch_size, dims, cuda, verbose)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def get_activations(images, model, batch_size=64, dims=2048, cuda=True, verbose=False):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- images : Numpy array of dimension (n_images, 3, hi, wi). The values
must lie between 0 and 1.
-- model : Instance of inception model
-- batch_size : the images numpy array is split into batches with
batch size batch_size. A reasonable batch size depends
on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the number
of calculated batches is reported.
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
model.eval()
d0 = images.shape[0]
if batch_size > d0:
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = d0
n_batches = d0 // batch_size
n_used_imgs = n_batches * batch_size
pred_arr = np.empty((n_used_imgs, dims))
for i in tqdm(range(n_batches), desc='calculate activations'):
if verbose:
print('\rPropagating batch %d/%d' %
(i + 1, n_batches), end='', flush=True)
start = i * batch_size
end = start + batch_size
batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor)
batch = Variable(batch)
if torch.cuda.is_available:
batch = batch.cuda()
with torch.no_grad():
pred = model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.shape[2] != 1 or pred.shape[3] != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1)
if verbose:
print(' done')
return pred_arr
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representive data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representive data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean)