You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

213 lines
7.9 KiB

import os
import pickle
import numpy as np
from tqdm import tqdm
from scipy import linalg
from multiprocessing import Pool
from skimage.metrics import structural_similarity
from skimage.metrics import peak_signal_noise_ratio
import torch
from torch.autograd import Variable
from torch.nn.functional import adaptive_avg_pool2d
from .inception import InceptionV3
# ============================
def compare_mae(pairs):
real, fake = pairs
real, fake = real.astype(np.float32), fake.astype(np.float32)
return np.sum(np.abs(real - fake)) / np.sum(real + fake)
def compare_psnr(pairs):
real, fake = pairs
return peak_signal_noise_ratio(real, fake)
def compare_ssim(pairs):
real, fake = pairs
return structural_similarity(real, fake, multichannel=True)
# ================================
def mae(reals, fakes, num_worker=8):
error = 0
pool = Pool(num_worker)
for val in tqdm(pool.imap_unordered(compare_mae, zip(reals, fakes)), total=len(reals), desc='compare_mae'):
error += val
return error / len(reals)
def psnr(reals, fakes, num_worker=8):
error = 0
pool = Pool(num_worker)
for val in tqdm(pool.imap_unordered(compare_psnr, zip(reals, fakes)), total=len(reals), desc='compare_psnr'):
error += val
return error / len(reals)
def ssim(reals, fakes, num_worker=8):
error = 0
pool = Pool(num_worker)
for val in tqdm(pool.imap_unordered(compare_ssim, zip(reals, fakes)), total=len(reals), desc='compare_ssim'):
error += val
return error / len(reals)
def fid(reals, fakes, num_worker=8, real_fid_path=None):
dims = 2048
batch_size = 4
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx]).cuda()
if real_fid_path is None:
real_fid_path = 'places2_fid.pt'
if os.path.isfile(real_fid_path):
data = pickle.load(open(real_fid_path, 'rb'))
real_m, real_s = data['mu'], data['sigma']
else:
reals = (np.array(reals).astype(np.float32) / 255.0).transpose((0, 3, 1, 2))
real_m, real_s = calculate_activation_statistics(reals, model, batch_size, dims)
with open(real_fid_path, 'wb') as f:
pickle.dump({'mu': real_m, 'sigma': real_s}, f)
# calculate fid statistics for fake images
fakes = (np.array(fakes).astype(np.float32) / 255.0).transpose((0, 3, 1, 2))
fake_m, fake_s = calculate_activation_statistics(fakes, model, batch_size, dims)
fid_value = calculate_frechet_distance(real_m, real_s, fake_m, fake_s)
return fid_value
def calculate_activation_statistics(images, model, batch_size=64,
dims=2048, cuda=True, verbose=False):
"""Calculation of the statistics used by the FID.
Params:
-- images : Numpy array of dimension (n_images, 3, hi, wi). The values
must lie between 0 and 1.
-- model : Instance of inception model
-- batch_size : The images numpy array is split into batches with
batch size batch_size. A reasonable batch size
depends on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the
number of calculated batches is reported.
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
"""
act = get_activations(images, model, batch_size, dims, cuda, verbose)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def get_activations(images, model, batch_size=64, dims=2048, cuda=True, verbose=False):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- images : Numpy array of dimension (n_images, 3, hi, wi). The values
must lie between 0 and 1.
-- model : Instance of inception model
-- batch_size : the images numpy array is split into batches with
batch size batch_size. A reasonable batch size depends
on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the number
of calculated batches is reported.
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
model.eval()
d0 = images.shape[0]
if batch_size > d0:
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = d0
n_batches = d0 // batch_size
n_used_imgs = n_batches * batch_size
pred_arr = np.empty((n_used_imgs, dims))
for i in tqdm(range(n_batches), desc='calculate activations'):
if verbose:
print('\rPropagating batch %d/%d' %
(i + 1, n_batches), end='', flush=True)
start = i * batch_size
end = start + batch_size
batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor)
batch = Variable(batch)
if torch.cuda.is_available:
batch = batch.cuda()
with torch.no_grad():
pred = model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.shape[2] != 1 or pred.shape[3] != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1)
if verbose:
print(' done')
return pred_arr
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representive data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representive data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean)