[TVCG] AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Yanhong Zeng 973368b8b7
init
4 years ago
docs init 4 years ago
examples init 4 years ago
experiments init 4 years ago
src init 4 years ago
.gitignore init 4 years ago
README.md init 4 years ago

README.md

AOT-GAN for High-Resolution Image Inpainting

aotgan

Arxiv Paper |

AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting
Yanhong Zeng, Jianlong Fu, Hongyang Chao, and Baining Guo.

Citation

If any part of our paper and code is helpful to your work, please generously cite with:

@inproceedings{yan2021agg,
  author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang and Guo, Baining},
  title = {Aggregated Contextual Transformations for High-Resolution Image Inpainting},
  booktitle = {Arxiv},
  pages={-},
  year = {2020}
}

Introduction

Despite some promising results, it remains challenging for existing image inpainting approaches to fill in large missing regions in high resolution images (e.g., 512x512). We analyze that the difficulties mainly drive from simultaneously inferring missing contents and synthesizing fine-grained textures for a extremely large missing region. We propose a GAN-based model that improves performance by,

  1. Enhancing context reasoning by AOT Block in the generator. The AOT blocks aggregate contextual transformations with different receptive fields, allowing to capture both informative distant contexts and rich patterns of interest for context reasoning.
  2. Enhancing texture synthesis by SoftGAN in the discriminator. We improve the training of the discriminator by a tailored mask-prediction task. The enhanced discriminator is optimized to distinguish the detailed appearance of real and synthesized patches, which can in turn facilitate the generator to synthesize more realistic textures.

Results

face_object logo

Prerequisites

  • python 3.8.8
  • pytorch (tested on Release 1.8.1)

Installation

Clone this repo.

git clone git@github.com:researchmm/AOT-GAN-for-Inpainting.git
cd AOT-GAN-for-Inpainting/

For the full set of required Python packages, we suggest create a Conda environment from the provided YAML, e.g.

conda env create -f environment.yml 
conda activate inpainting

Datasets

Getting Started

  1. Training:
    • Prepare training images filelist [our split]
    • Modify celebahq.json to set path to data, iterations, and other parameters.
    • Our codes are built upon distributed training with Pytorch.
    • Run python train.py -c [config_file] -n [model_name] -m [mask_type] -s [image_size] .
    • For example, python train.py -c configs/celebahq.json -n pennet -m pconv -s 512
  2. Resume training:
    • Run python train.py -n pennet -m pconv -s 512 .
  3. Testing:
    • Run python test.py -c [config_file] -n [model_name] -m [mask_type] -s [image_size] .
    • For example, python test.py -c configs/celebahq.json -n pennet -m pconv -s 512
  4. Evaluating:
    • Run python eval.py -r [result_path]

Pretrained models

CELEBA-HQ | Places2

Download the model dirs and put it under experiments/

TensorBoard

Visualization on TensorBoard for training is supported.

Run tensorboard --logdir [log_fold] --bind_all and open browser to view training progress.

License

Licensed under an MIT license.