You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/modelindex/.templates/models/densenet.md

6.5 KiB

Summary

DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.

The DenseNet Blur variant in this collection by Ross Wightman employs Blur Pooling

{% include 'code_snippets.md' %}

How do I train this model?

You can follow the timm recipe scripts for training a new model afresh.

Citation

@article{DBLP:journals/corr/HuangLW16a,
  author    = {Gao Huang and
               Zhuang Liu and
               Kilian Q. Weinberger},
  title     = {Densely Connected Convolutional Networks},
  journal   = {CoRR},
  volume    = {abs/1608.06993},
  year      = {2016},
  url       = {http://arxiv.org/abs/1608.06993},
  archivePrefix = {arXiv},
  eprint    = {1608.06993},
  timestamp = {Mon, 10 Sep 2018 15:49:32 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/HuangLW16a.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}