You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/modelindex/.templates/models/densenet.md

262 lines
6.5 KiB

# Summary
**DenseNet** is a type of convolutional neural network that utilises dense connections between layers, through [Dense Blocks](http://www.paperswithcode.com/method/dense-block), where we connect *all layers* (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.
The **DenseNet Blur** variant in this collection by Ross Wightman employs [Blur Pooling](http://www.paperswithcode.com/method/blur-pooling)
{% include 'code_snippets.md' %}
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@article{DBLP:journals/corr/HuangLW16a,
author = {Gao Huang and
Zhuang Liu and
Kilian Q. Weinberger},
title = {Densely Connected Convolutional Networks},
journal = {CoRR},
volume = {abs/1608.06993},
year = {2016},
url = {http://arxiv.org/abs/1608.06993},
archivePrefix = {arXiv},
eprint = {1608.06993},
timestamp = {Mon, 10 Sep 2018 15:49:32 +0200},
biburl = {https://dblp.org/rec/journals/corr/HuangLW16a.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```
<!--
Models:
- Name: densenetblur121d
Metadata:
FLOPs: 3947812864
Training Data:
- ImageNet
Architecture:
- 1x1 Convolution
- Batch Normalization
- Blur Pooling
- Convolution
- Dense Block
- Dense Connections
- Dropout
- Max Pooling
- ReLU
- Softmax
File Size: 32456500
Tasks:
- Image Classification
ID: densenetblur121d
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L305
In Collection: DenseNet
- Name: tv_densenet121
Metadata:
FLOPs: 3641843200
Epochs: 90
Batch Size: 32
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Block
- Dense Connections
- Dropout
- Max Pooling
- ReLU
- Softmax
File Size: 32342954
Tasks:
- Image Classification
ID: tv_densenet121
LR: 0.1
Crop Pct: '0.875'
LR Gamma: 0.1
Momentum: 0.9
Image Size: '224'
LR Step Size: 30
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L379
In Collection: DenseNet
- Name: densenet121
Metadata:
FLOPs: 3641843200
Epochs: 90
Batch Size: 256
Training Data:
- ImageNet
Training Techniques:
- Kaiming Initialization
- Nesterov Accelerated Gradient
- Weight Decay
Training Resources: ''
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Block
- Dense Connections
- Dropout
- Max Pooling
- ReLU
- Softmax
File Size: 32376726
Tasks:
- Image Classification
Training Time: ''
ID: densenet121
LR: 0.1
Layers: 121
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L295
Config: ''
In Collection: DenseNet
- Name: densenet201
Metadata:
FLOPs: 5514321024
Epochs: 90
Batch Size: 256
Training Data:
- ImageNet
Training Techniques:
- Kaiming Initialization
- Nesterov Accelerated Gradient
- Weight Decay
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Block
- Dense Connections
- Dropout
- Max Pooling
- ReLU
- Softmax
File Size: 81131730
Tasks:
- Image Classification
ID: densenet201
LR: 0.1
Layers: 201
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L337
In Collection: DenseNet
- Name: densenet169
Metadata:
FLOPs: 4316945792
Epochs: 90
Batch Size: 256
Training Data:
- ImageNet
Training Techniques:
- Kaiming Initialization
- Nesterov Accelerated Gradient
- Weight Decay
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Block
- Dense Connections
- Dropout
- Max Pooling
- ReLU
- Softmax
File Size: 57365526
Tasks:
- Image Classification
ID: densenet169
LR: 0.1
Layers: 169
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L327
In Collection: DenseNet
- Name: densenet161
Metadata:
FLOPs: 9931959264
Epochs: 90
Batch Size: 256
Training Data:
- ImageNet
Training Techniques:
- Kaiming Initialization
- Nesterov Accelerated Gradient
- Weight Decay
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Block
- Dense Connections
- Dropout
- Max Pooling
- ReLU
- Softmax
File Size: 115730790
Tasks:
- Image Classification
ID: densenet161
LR: 0.1
Layers: 161
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L347
In Collection: DenseNet
Collections:
- Name: DenseNet
Paper:
title: Densely Connected Convolutional Networks
url: https://papperswithcode.com//paper/densely-connected-convolutional-networks
type: model-index
Type: model-index
-->