Add a BCE loss impl that converts dense targets to sparse /w smoothing as an alternate to CE w/ smoothing. For training experiments.
parent
29a37e23ee
commit
ba9c1108a1
@ -0,0 +1,23 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class DenseBinaryCrossEntropy(nn.Module):
|
||||
""" BCE using one-hot from dense targets w/ label smoothing
|
||||
NOTE for experiments comparing CE to BCE /w label smoothing, may remove
|
||||
"""
|
||||
def __init__(self, smoothing=0.1):
|
||||
super(DenseBinaryCrossEntropy, self).__init__()
|
||||
assert 0. <= smoothing < 1.0
|
||||
self.smoothing = smoothing
|
||||
self.bce = nn.BCEWithLogitsLoss()
|
||||
|
||||
def forward(self, x, target):
|
||||
num_classes = x.shape[-1]
|
||||
off_value = self.smoothing / num_classes
|
||||
on_value = 1. - self.smoothing + off_value
|
||||
target = target.long().view(-1, 1)
|
||||
target = torch.full(
|
||||
(target.size()[0], num_classes), off_value, device=x.device, dtype=x.dtype).scatter_(1, target, on_value)
|
||||
return self.bce(x, target)
|
Loading…
Reference in new issue