* add polynomial decay 'poly' * cleanup cycle specific args for cosine, poly, and tanh sched, t_mul -> cycle_mul, decay -> cycle_decay, default cycle_limit to 1 in each opt * add k-decay for cosine and poly sched as per https://arxiv.org/abs/2004.05909 * change default tanh ub/lb to push inflection to later epochspull/821/head
parent
492c0a4e20
commit
29a37e23ee
@ -1,5 +1,8 @@
|
||||
from .cosine_lr import CosineLRScheduler
|
||||
from .multistep_lr import MultiStepLRScheduler
|
||||
from .plateau_lr import PlateauLRScheduler
|
||||
from .poly_lr import PolyLRScheduler
|
||||
from .step_lr import StepLRScheduler
|
||||
from .tanh_lr import TanhLRScheduler
|
||||
|
||||
from .scheduler_factory import create_scheduler
|
||||
|
@ -0,0 +1,116 @@
|
||||
""" Polynomial Scheduler
|
||||
|
||||
Polynomial LR schedule with warmup, noise.
|
||||
|
||||
Hacked together by / Copyright 2021 Ross Wightman
|
||||
"""
|
||||
import math
|
||||
import logging
|
||||
|
||||
import torch
|
||||
|
||||
from .scheduler import Scheduler
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PolyLRScheduler(Scheduler):
|
||||
""" Polynomial LR Scheduler w/ warmup, noise, and k-decay
|
||||
|
||||
k-decay option based on `k-decay: A New Method For Learning Rate Schedule` - https://arxiv.org/abs/2004.05909
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
t_initial: int,
|
||||
power: float = 0.5,
|
||||
lr_min: float = 0.,
|
||||
cycle_mul: float = 1.,
|
||||
cycle_decay: float = 1.,
|
||||
cycle_limit: int = 1,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
warmup_prefix=False,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
k_decay=.5,
|
||||
initialize=True) -> None:
|
||||
super().__init__(
|
||||
optimizer, param_group_field="lr",
|
||||
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed,
|
||||
initialize=initialize)
|
||||
|
||||
assert t_initial > 0
|
||||
assert lr_min >= 0
|
||||
if t_initial == 1 and cycle_mul == 1 and cycle_decay == 1:
|
||||
_logger.warning("Cosine annealing scheduler will have no effect on the learning "
|
||||
"rate since t_initial = t_mul = eta_mul = 1.")
|
||||
self.t_initial = t_initial
|
||||
self.power = power
|
||||
self.lr_min = lr_min
|
||||
self.cycle_mul = cycle_mul
|
||||
self.cycle_decay = cycle_decay
|
||||
self.cycle_limit = cycle_limit
|
||||
self.warmup_t = warmup_t
|
||||
self.warmup_lr_init = warmup_lr_init
|
||||
self.warmup_prefix = warmup_prefix
|
||||
self.t_in_epochs = t_in_epochs
|
||||
self.k_decay = k_decay
|
||||
if self.warmup_t:
|
||||
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
|
||||
super().update_groups(self.warmup_lr_init)
|
||||
else:
|
||||
self.warmup_steps = [1 for _ in self.base_values]
|
||||
|
||||
def _get_lr(self, t):
|
||||
if t < self.warmup_t:
|
||||
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps]
|
||||
else:
|
||||
if self.warmup_prefix:
|
||||
t = t - self.warmup_t
|
||||
|
||||
if self.cycle_mul != 1:
|
||||
i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul))
|
||||
t_i = self.cycle_mul ** i * self.t_initial
|
||||
t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial
|
||||
else:
|
||||
i = t // self.t_initial
|
||||
t_i = self.t_initial
|
||||
t_curr = t - (self.t_initial * i)
|
||||
|
||||
gamma = self.cycle_decay ** i
|
||||
lr_max_values = [v * gamma for v in self.base_values]
|
||||
k = self.k_decay
|
||||
|
||||
if i < self.cycle_limit:
|
||||
lrs = [
|
||||
self.lr_min + (lr_max - self.lr_min) * (1 - t_curr ** k / t_i ** k) ** self.power
|
||||
for lr_max in lr_max_values
|
||||
]
|
||||
else:
|
||||
lrs = [self.lr_min for _ in self.base_values]
|
||||
|
||||
return lrs
|
||||
|
||||
def get_epoch_values(self, epoch: int):
|
||||
if self.t_in_epochs:
|
||||
return self._get_lr(epoch)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_update_values(self, num_updates: int):
|
||||
if not self.t_in_epochs:
|
||||
return self._get_lr(num_updates)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_cycle_length(self, cycles=0):
|
||||
cycles = max(1, cycles or self.cycle_limit)
|
||||
if self.cycle_mul == 1.0:
|
||||
return self.t_initial * cycles
|
||||
else:
|
||||
return int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul)))
|
Loading…
Reference in new issue