Add backward and default_cfg tests and fix a few issues found. Fix #153

pull/154/head
Ross Wightman 5 years ago
parent ea2e59ca36
commit afb6bd0669

@ -1,19 +0,0 @@
import pytest
import torch
from timm import list_models, create_model
@pytest.mark.timeout(300)
@pytest.mark.parametrize('model_name', list_models(exclude_filters='*efficientnet_l2*'))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward(model_name, batch_size):
"""Run a single forward pass with each model"""
model = create_model(model_name, pretrained=False)
model.eval()
inputs = torch.randn((batch_size, *model.default_cfg['input_size']))
outputs = model(inputs)
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'

@ -0,0 +1,70 @@
import pytest
import torch
from timm import list_models, create_model
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models())
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward(model_name, batch_size):
"""Run a single forward pass with each model"""
model = create_model(model_name, pretrained=False)
model.eval()
input_size = model.default_cfg['input_size']
if any([x > 448 for x in input_size]):
# cap forward test at max res 448 * 448 to keep resource down
input_size = tuple([min(x, 448) for x in input_size])
inputs = torch.randn((batch_size, *input_size))
outputs = model(inputs)
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters='dla*')) # DLA models have an issue TBD
@pytest.mark.parametrize('batch_size', [2])
def test_model_backward(model_name, batch_size):
"""Run a single forward pass with each model"""
model = create_model(model_name, pretrained=False, num_classes=42)
num_params = sum([x.numel() for x in model.parameters()])
model.eval()
input_size = model.default_cfg['input_size']
if any([x > 128 for x in input_size]):
# cap backward test at 128 * 128 to keep resource usage down
input_size = tuple([min(x, 128) for x in input_size])
inputs = torch.randn((batch_size, *input_size))
outputs = model(inputs)
outputs.mean().backward()
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
assert outputs.shape[-1] == 42
assert num_params == num_grad, 'Some parameters are missing gradients'
assert not torch.isnan(outputs).any(), 'Output included NaNs'
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models())
@pytest.mark.parametrize('batch_size', [1])
def test_model_default_cfgs(model_name, batch_size):
"""Run a single forward pass with each model"""
model = create_model(model_name, pretrained=False)
model.eval()
state_dict = model.state_dict()
cfg = model.default_cfg
classifier = cfg['classifier']
first_conv = cfg['first_conv']
pool_size = cfg['pool_size']
input_size = model.default_cfg['input_size']
if all([x <= 448 for x in input_size]):
# pool size only checked if default res <= 448 * 448 to keep resource down
input_size = tuple([min(x, 448) for x in input_size])
outputs = model.forward_features(torch.randn((batch_size, *input_size)))
assert outputs.shape[-1] == pool_size[-1] and outputs.shape[-2] == pool_size[-2]
assert any([k.startswith(cfg['classifier']) for k in state_dict.keys()]), f'{classifier} not in model params'
assert any([k.startswith(cfg['first_conv']) for k in state_dict.keys()]), f'{first_conv} not in model params'

@ -237,8 +237,11 @@ class DlaTree(nn.Module):
def forward(self, x, residual=None, children=None): def forward(self, x, residual=None, children=None):
children = [] if children is None else children children = [] if children is None else children
bottom = self.downsample(x) if self.downsample else x # FIXME the way downsample / project are used here and residual is passed to next level up
residual = self.project(bottom) if self.project else bottom # the tree, the residual is overridden and some project weights are thus never used and
# have no gradients. This appears to be an issue with the original model / weights.
bottom = self.downsample(x) if self.downsample is not None else x
residual = self.project(bottom) if self.project is not None else bottom
if self.level_root: if self.level_root:
children.append(bottom) children.append(bottom)
x1 = self.tree1(x, residual) x1 = self.tree1(x, residual)
@ -354,7 +357,8 @@ def dla60_res2next(pretrained=None, num_classes=1000, in_chans=3, **kwargs):
@register_model @register_model
def dla34(pretrained=None, num_classes=1000, in_chans=3, **kwargs): # DLA-34 def dla34(pretrained=None, num_classes=1000, in_chans=3, **kwargs): # DLA-34
default_cfg = default_cfgs['dla34'] default_cfg = default_cfgs['dla34']
model = DLA([1, 1, 1, 2, 2, 1], [16, 32, 64, 128, 256, 512], block=DlaBasic, **kwargs) model = DLA([1, 1, 1, 2, 2, 1], [16, 32, 64, 128, 256, 512], block=DlaBasic,
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg model.default_cfg = default_cfg
if pretrained: if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans) load_pretrained(model, default_cfg, num_classes, in_chans)

@ -36,7 +36,7 @@ default_cfgs = {
'url': '', 'url': '',
'input_size': (3, 299, 299), 'input_size': (3, 299, 299),
'crop_pct': 0.875, 'crop_pct': 0.875,
'pool_size': (10, 10), 'pool_size': (5, 5),
'interpolation': 'bicubic', 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'mean': IMAGENET_DEFAULT_MEAN,
'std': IMAGENET_DEFAULT_STD, 'std': IMAGENET_DEFAULT_STD,

@ -34,7 +34,7 @@ def _cfg(url='', **kwargs):
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear', 'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv1', 'classifier': 'fc', 'first_conv': 'conv1', 'classifier': 'classifier',
**kwargs **kwargs
} }

@ -15,7 +15,7 @@ def _cfg(url='', **kwargs):
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
'crop_pct': 0.875, 'interpolation': 'bicubic', 'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'conv1', 'classifier': 'fc', 'first_conv': 'Conv2d_1a_3x3', 'classifier': 'fc',
**kwargs **kwargs
} }

@ -21,7 +21,7 @@ __all__ = ['MobileNetV3']
def _cfg(url='', **kwargs): def _cfg(url='', **kwargs):
return { return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (1, 1),
'crop_pct': 0.875, 'interpolation': 'bilinear', 'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv_stem', 'classifier': 'classifier', 'first_conv': 'conv_stem', 'classifier': 'classifier',

@ -19,7 +19,7 @@ default_cfgs = {
'mean': (0.5, 0.5, 0.5), 'mean': (0.5, 0.5, 0.5),
'std': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
'num_classes': 1001, 'num_classes': 1001,
'first_conv': 'conv_0.conv', 'first_conv': 'conv0.conv',
'classifier': 'last_linear', 'classifier': 'last_linear',
}, },
} }
@ -612,7 +612,7 @@ def nasnetalarge(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""NASNet-A large model architecture. """NASNet-A large model architecture.
""" """
default_cfg = default_cfgs['nasnetalarge'] default_cfg = default_cfgs['nasnetalarge']
model = NASNetALarge(num_classes=1000, in_chans=in_chans, **kwargs) model = NASNetALarge(num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg model.default_cfg = default_cfg
if pretrained: if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans) load_pretrained(model, default_cfg, num_classes, in_chans)

@ -38,11 +38,14 @@ default_cfgs = {
'resnest50d': _cfg( 'resnest50d': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50-528c19ca.pth'), url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50-528c19ca.pth'),
'resnest101e': _cfg( 'resnest101e': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest101-22405ba7.pth', input_size=(3, 256, 256)), url='https://hangzh.s3.amazonaws.com/encoding/models/resnest101-22405ba7.pth',
input_size=(3, 256, 256), pool_size=(8, 8)),
'resnest200e': _cfg( 'resnest200e': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest200-75117900.pth', input_size=(3, 320, 320)), url='https://hangzh.s3.amazonaws.com/encoding/models/resnest200-75117900.pth',
input_size=(3, 320, 320), pool_size=(10, 10)),
'resnest269e': _cfg( 'resnest269e': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest269-0cc87c48.pth', input_size=(3, 416, 416)), url='https://hangzh.s3.amazonaws.com/encoding/models/resnest269-0cc87c48.pth',
input_size=(3, 416, 416), pool_size=(13, 13)),
'resnest50d_4s2x40d': _cfg( 'resnest50d_4s2x40d': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50_fast_4s2x40d-41d14ed0.pth', url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50_fast_4s2x40d-41d14ed0.pth',
interpolation='bicubic'), interpolation='bicubic'),

@ -26,7 +26,7 @@ __all__ = ['SelecSLS'] # model_registry will add each entrypoint fn to this
def _cfg(url='', **kwargs): def _cfg(url='', **kwargs):
return { return {
'url': url, 'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (3, 3), 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (4, 4),
'crop_pct': 0.875, 'interpolation': 'bilinear', 'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem', 'classifier': 'fc', 'first_conv': 'stem', 'classifier': 'fc',

@ -28,7 +28,7 @@ def _cfg(url='', **kwargs):
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear', 'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': (0, 0, 0), 'std': (1, 1, 1), 'mean': (0, 0, 0), 'std': (1, 1, 1),
'first_conv': 'layer0.conv1', 'classifier': 'head.fc', 'first_conv': 'body.conv1', 'classifier': 'head.fc',
**kwargs **kwargs
} }
@ -41,13 +41,13 @@ default_cfgs = {
'tresnet_xl': _cfg( 'tresnet_xl': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_82_0-a2d51b00.pth'), url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_82_0-a2d51b00.pth'),
'tresnet_m_448': _cfg( 'tresnet_m_448': _cfg(
input_size=(3, 448, 448), input_size=(3, 448, 448), pool_size=(14, 14),
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_448-bc359d10.pth'), url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_448-bc359d10.pth'),
'tresnet_l_448': _cfg( 'tresnet_l_448': _cfg(
input_size=(3, 448, 448), input_size=(3, 448, 448), pool_size=(14, 14),
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_448-940d0cd1.pth'), url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_448-940d0cd1.pth'),
'tresnet_xl_448': _cfg( 'tresnet_xl_448': _cfg(
input_size=(3, 448, 448), input_size=(3, 448, 448), pool_size=(14, 14),
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_448-8c1815de.pth') url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_448-8c1815de.pth')
} }

@ -37,6 +37,7 @@ default_cfgs = {
'xception': { 'xception': {
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/xception-43020ad28.pth', 'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/xception-43020ad28.pth',
'input_size': (3, 299, 299), 'input_size': (3, 299, 299),
'pool_size': (10, 10),
'crop_pct': 0.8975, 'crop_pct': 0.8975,
'interpolation': 'bicubic', 'interpolation': 'bicubic',
'mean': (0.5, 0.5, 0.5), 'mean': (0.5, 0.5, 0.5),

Loading…
Cancel
Save