Add backward and default_cfg tests and fix a few issues found. Fix #153
parent
ea2e59ca36
commit
afb6bd0669
@ -1,19 +0,0 @@
|
|||||||
import pytest
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from timm import list_models, create_model
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.timeout(300)
|
|
||||||
@pytest.mark.parametrize('model_name', list_models(exclude_filters='*efficientnet_l2*'))
|
|
||||||
@pytest.mark.parametrize('batch_size', [1])
|
|
||||||
def test_model_forward(model_name, batch_size):
|
|
||||||
"""Run a single forward pass with each model"""
|
|
||||||
model = create_model(model_name, pretrained=False)
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
inputs = torch.randn((batch_size, *model.default_cfg['input_size']))
|
|
||||||
outputs = model(inputs)
|
|
||||||
|
|
||||||
assert outputs.shape[0] == batch_size
|
|
||||||
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
@ -0,0 +1,70 @@
|
|||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from timm import list_models, create_model
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.timeout(120)
|
||||||
|
@pytest.mark.parametrize('model_name', list_models())
|
||||||
|
@pytest.mark.parametrize('batch_size', [1])
|
||||||
|
def test_model_forward(model_name, batch_size):
|
||||||
|
"""Run a single forward pass with each model"""
|
||||||
|
model = create_model(model_name, pretrained=False)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
input_size = model.default_cfg['input_size']
|
||||||
|
if any([x > 448 for x in input_size]):
|
||||||
|
# cap forward test at max res 448 * 448 to keep resource down
|
||||||
|
input_size = tuple([min(x, 448) for x in input_size])
|
||||||
|
inputs = torch.randn((batch_size, *input_size))
|
||||||
|
outputs = model(inputs)
|
||||||
|
|
||||||
|
assert outputs.shape[0] == batch_size
|
||||||
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.timeout(120)
|
||||||
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters='dla*')) # DLA models have an issue TBD
|
||||||
|
@pytest.mark.parametrize('batch_size', [2])
|
||||||
|
def test_model_backward(model_name, batch_size):
|
||||||
|
"""Run a single forward pass with each model"""
|
||||||
|
model = create_model(model_name, pretrained=False, num_classes=42)
|
||||||
|
num_params = sum([x.numel() for x in model.parameters()])
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
input_size = model.default_cfg['input_size']
|
||||||
|
if any([x > 128 for x in input_size]):
|
||||||
|
# cap backward test at 128 * 128 to keep resource usage down
|
||||||
|
input_size = tuple([min(x, 128) for x in input_size])
|
||||||
|
inputs = torch.randn((batch_size, *input_size))
|
||||||
|
outputs = model(inputs)
|
||||||
|
outputs.mean().backward()
|
||||||
|
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
|
||||||
|
|
||||||
|
assert outputs.shape[-1] == 42
|
||||||
|
assert num_params == num_grad, 'Some parameters are missing gradients'
|
||||||
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.timeout(120)
|
||||||
|
@pytest.mark.parametrize('model_name', list_models())
|
||||||
|
@pytest.mark.parametrize('batch_size', [1])
|
||||||
|
def test_model_default_cfgs(model_name, batch_size):
|
||||||
|
"""Run a single forward pass with each model"""
|
||||||
|
model = create_model(model_name, pretrained=False)
|
||||||
|
model.eval()
|
||||||
|
state_dict = model.state_dict()
|
||||||
|
cfg = model.default_cfg
|
||||||
|
|
||||||
|
classifier = cfg['classifier']
|
||||||
|
first_conv = cfg['first_conv']
|
||||||
|
pool_size = cfg['pool_size']
|
||||||
|
input_size = model.default_cfg['input_size']
|
||||||
|
|
||||||
|
if all([x <= 448 for x in input_size]):
|
||||||
|
# pool size only checked if default res <= 448 * 448 to keep resource down
|
||||||
|
input_size = tuple([min(x, 448) for x in input_size])
|
||||||
|
outputs = model.forward_features(torch.randn((batch_size, *input_size)))
|
||||||
|
assert outputs.shape[-1] == pool_size[-1] and outputs.shape[-2] == pool_size[-2]
|
||||||
|
assert any([k.startswith(cfg['classifier']) for k in state_dict.keys()]), f'{classifier} not in model params'
|
||||||
|
assert any([k.startswith(cfg['first_conv']) for k in state_dict.keys()]), f'{first_conv} not in model params'
|
Loading…
Reference in new issue