pull/554/head
v0.1-rs-weights
parent
e15c3886ba
commit
9cc7dda6e5
@ -0,0 +1,178 @@
|
||||
""" Shifted Window Attn
|
||||
|
||||
This is a WIP experiment to apply windowed attention from the Swin Transformer
|
||||
to a stand-alone module for use as an attn block in conv nets.
|
||||
|
||||
Based on original swin window code at https://github.com/microsoft/Swin-Transformer
|
||||
Swin Transformer paper: https://arxiv.org/pdf/2103.14030.pdf
|
||||
"""
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .drop import DropPath
|
||||
from .helpers import to_2tuple
|
||||
from .weight_init import trunc_normal_
|
||||
|
||||
|
||||
def window_partition(x, win_size: int):
|
||||
"""
|
||||
Args:
|
||||
x: (B, H, W, C)
|
||||
win_size (int): window size
|
||||
|
||||
Returns:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
"""
|
||||
B, H, W, C = x.shape
|
||||
x = x.view(B, H // win_size, win_size, W // win_size, win_size, C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, win_size, win_size, C)
|
||||
return windows
|
||||
|
||||
|
||||
def window_reverse(windows, win_size: int, H: int, W: int):
|
||||
"""
|
||||
Args:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
win_size (int): Window size
|
||||
H (int): Height of image
|
||||
W (int): Width of image
|
||||
|
||||
Returns:
|
||||
x: (B, H, W, C)
|
||||
"""
|
||||
B = int(windows.shape[0] / (H * W / win_size / win_size))
|
||||
x = windows.view(B, H // win_size, W // win_size, win_size, win_size, -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
||||
return x
|
||||
|
||||
|
||||
class WindowAttention(nn.Module):
|
||||
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||
It supports both of shifted and non-shifted window.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
win_size (int): The height and width of the window.
|
||||
num_heads (int): Number of attention heads.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, dim, dim_out=None, feat_size=None, stride=1, win_size=8, shift_size=None, num_heads=8,
|
||||
qkv_bias=True, attn_drop=0.):
|
||||
|
||||
super().__init__()
|
||||
self.dim_out = dim_out or dim
|
||||
self.feat_size = to_2tuple(feat_size)
|
||||
self.win_size = win_size
|
||||
self.shift_size = shift_size or win_size // 2
|
||||
if min(self.feat_size) <= win_size:
|
||||
# if window size is larger than input resolution, we don't partition windows
|
||||
self.shift_size = 0
|
||||
self.win_size = min(self.feat_size)
|
||||
assert 0 <= self.shift_size < self.win_size, "shift_size must in 0-window_size"
|
||||
self.num_heads = num_heads
|
||||
head_dim = self.dim_out // num_heads
|
||||
self.scale = head_dim ** -0.5
|
||||
|
||||
if self.shift_size > 0:
|
||||
# calculate attention mask for SW-MSA
|
||||
H, W = self.feat_size
|
||||
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
||||
h_slices = (
|
||||
slice(0, -self.win_size),
|
||||
slice(-self.win_size, -self.shift_size),
|
||||
slice(-self.shift_size, None))
|
||||
w_slices = (
|
||||
slice(0, -self.win_size),
|
||||
slice(-self.win_size, -self.shift_size),
|
||||
slice(-self.shift_size, None))
|
||||
cnt = 0
|
||||
for h in h_slices:
|
||||
for w in w_slices:
|
||||
img_mask[:, h, w, :] = cnt
|
||||
cnt += 1
|
||||
mask_windows = window_partition(img_mask, self.win_size) # num_win, window_size, window_size, 1
|
||||
mask_windows = mask_windows.view(-1, self.win_size * self.win_size)
|
||||
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
||||
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
||||
else:
|
||||
attn_mask = None
|
||||
self.register_buffer("attn_mask", attn_mask)
|
||||
|
||||
# define a parameter table of relative position bias
|
||||
self.relative_position_bias_table = nn.Parameter(
|
||||
# 2 * Wh - 1 * 2 * Ww - 1, nH
|
||||
torch.zeros((2 * self.win_size - 1) * (2 * self.win_size - 1), num_heads))
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = torch.arange(self.win_size)
|
||||
coords_w = torch.arange(self.win_size)
|
||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += self.win_size - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += self.win_size - 1
|
||||
relative_coords[:, :, 0] *= 2 * self.win_size - 1
|
||||
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
self.register_buffer("relative_position_index", relative_position_index)
|
||||
trunc_normal_(self.relative_position_bias_table, std=.02)
|
||||
|
||||
self.qkv = nn.Linear(dim, self.dim_out * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.softmax = nn.Softmax(dim=-1)
|
||||
self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
|
||||
# cyclic shift
|
||||
if self.shift_size > 0:
|
||||
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
||||
else:
|
||||
shifted_x = x
|
||||
|
||||
# partition windows
|
||||
win_size_sq = self.win_size * self.win_size
|
||||
x_windows = window_partition(shifted_x, self.win_size) # num_win * B, window_size, window_size, C
|
||||
x_windows = x_windows.view(-1, win_size_sq, C) # num_win * B, window_size*window_size, C
|
||||
BW, N, _ = x_windows.shape
|
||||
|
||||
qkv = self.qkv(x_windows)
|
||||
qkv = qkv.reshape(BW, N, 3, self.num_heads, self.dim_out // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2]
|
||||
q = q * self.scale
|
||||
attn = (q @ k.transpose(-2, -1))
|
||||
|
||||
relative_position_bias = self.relative_position_bias_table[
|
||||
self.relative_position_index.view(-1)].view(win_size_sq, win_size_sq, -1)
|
||||
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh * Ww, Wh * Ww
|
||||
attn = attn + relative_position_bias.unsqueeze(0)
|
||||
if self.attn_mask is not None:
|
||||
num_win = self.attn_mask.shape[0]
|
||||
attn = attn.view(B, num_win, self.num_heads, N, N) + self.attn_mask.unsqueeze(1).unsqueeze(0)
|
||||
attn = attn.view(-1, self.num_heads, N, N)
|
||||
attn = self.softmax(attn)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(BW, N, self.dim_out)
|
||||
|
||||
# merge windows
|
||||
x = x.view(-1, self.win_size, self.win_size, self.dim_out)
|
||||
shifted_x = window_reverse(x, self.win_size, H, W) # B H' W' C
|
||||
|
||||
# reverse cyclic shift
|
||||
if self.shift_size > 0:
|
||||
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
||||
else:
|
||||
x = shifted_x
|
||||
x = x.view(B, H, W, self.dim_out).permute(0, 3, 1, 2)
|
||||
x = self.pool(x)
|
||||
return x
|
||||
|
||||
|
Loading…
Reference in new issue