Defaul lambda r=7. Define '26t' stage 4/5 256x256 variants for all of bot/halo/lambda nets for experiment. Add resnet50t for exp. Fix a few comments.

pull/554/head
Ross Wightman 4 years ago
parent d15ad3e919
commit e15c3886ba

@ -45,15 +45,16 @@ def _cfg(url='', **kwargs):
default_cfgs = {
# GPU-Efficient (ResNet) weights
'botnet26t_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256)),
'botnet50t_224': _cfg(url='', fixed_input_size=True),
'botnet50t_c4c5_224': _cfg(url='', fixed_input_size=True),
'halonet_h1': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
'halonet_h1_c4c5': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
'halonet26t': _cfg(url=''),
'halonet26t': _cfg(url='', input_size=(3, 256, 256)),
'halonet50t': _cfg(url=''),
'lambda_resnet26t': _cfg(url='', min_input_size=(3, 128, 128)),
'lambda_resnet26t': _cfg(url='', min_input_size=(3, 128, 128), input_size=(3, 256, 256)),
'lambda_resnet50t': _cfg(url='', min_input_size=(3, 128, 128)),
}
@ -92,6 +93,21 @@ def interleave_attn(
model_cfgs = dict(
botnet26t=ByoaCfg(
blocks=(
ByoaBlocksCfg(type='bottle', d=3, c=256, s=2, gs=0, br=0.25),
ByoaBlocksCfg(type='bottle', d=4, c=512, s=2, gs=0, br=0.25),
interleave_attn(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=0, br=0.25),
ByoaBlocksCfg(type='self_attn', d=3, c=2048, s=1, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
num_features=0,
self_attn_layer='bottleneck',
self_attn_fixed_size=True,
self_attn_kwargs=dict()
),
botnet50t=ByoaCfg(
blocks=(
ByoaBlocksCfg(type='bottle', d=3, c=256, s=2, gs=0, br=0.25),
@ -161,7 +177,7 @@ model_cfgs = dict(
blocks=(
ByoaBlocksCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
ByoaBlocksCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25),
ByoaBlocksCfg(type='bottle', d=2, c=1024, s=2, gs=0, br=0.25),
interleave_attn(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=0, br=0.25),
ByoaBlocksCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25),
),
stem_chs=64,
@ -169,7 +185,7 @@ model_cfgs = dict(
stem_pool='maxpool',
num_features=0,
self_attn_layer='halo',
self_attn_kwargs=dict(block_size=7, halo_size=2)
self_attn_kwargs=dict(block_size=8, halo_size=2) # intended for 256x256 res
),
halonet50t=ByoaCfg(
blocks=(
@ -370,6 +386,14 @@ def _create_byoanet(variant, cfg_variant=None, pretrained=False, **kwargs):
**kwargs)
@register_model
def botnet26t_256(pretrained=False, **kwargs):
""" Bottleneck Transformer w/ ResNet26-T backbone. Bottleneck attn in final stage.
"""
kwargs.setdefault('img_size', 256)
return _create_byoanet('botnet26t_256', 'botnet26t', pretrained=pretrained, **kwargs)
@register_model
def botnet50t_224(pretrained=False, **kwargs):
""" Bottleneck Transformer w/ ResNet50-T backbone. Bottleneck attn in final stage.

@ -115,7 +115,7 @@ class HaloAttn(nn.Module):
self.win_size = block_size + halo_size * 2 # neighbourhood window size
self.scale = self.dim_head ** -0.5
# FIXME not clear if this stride behaviour is what the paper intended, not really clear
# FIXME not clear if this stride behaviour is what the paper intended
# Also, the paper mentions using a 3D conv for dealing with the blocking/gather, and leaving
# data in unfolded block form. I haven't wrapped my head around how that'd look.
self.q = nn.Conv2d(dim, self.dim_qk, 1, stride=self.stride, bias=qkv_bias)
@ -139,10 +139,10 @@ class HaloAttn(nn.Module):
kv = self.kv(x)
# FIXME I 'think' this unfold does what I want it to, but I should investigate
k = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size)
k = k.reshape(
kv = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size)
kv = kv.reshape(
B * self.num_heads, self.dim_head + (self.dim_v // self.num_heads), -1, num_blocks).transpose(1, 3)
k, v = torch.split(k, [self.dim_head, self.dim_v // self.num_heads], dim=-1)
k, v = torch.split(kv, [self.dim_head, self.dim_v // self.num_heads], dim=-1)
attn_logits = (q @ k.transpose(-1, -2)) * self.scale # FIXME should usual attn scale be applied?
attn_logits = attn_logits + self.pos_embed(q) # B * num_heads, block_size ** 2, win_size ** 2

@ -34,7 +34,7 @@ class LambdaLayer(nn.Module):
"""
def __init__(
self,
dim, dim_out=None, stride=1, num_heads=4, dim_head=16, r=5, qkv_bias=False):
dim, dim_out=None, stride=1, num_heads=4, dim_head=16, r=7, qkv_bias=False):
super().__init__()
self.dim_out = dim_out or dim
self.dim_k = dim_head # query depth 'k'

@ -54,6 +54,9 @@ default_cfgs = {
'resnet50d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth',
interpolation='bicubic', first_conv='conv1.0'),
'resnet50t': _cfg(
url='',
interpolation='bicubic', first_conv='conv1.0'),
'resnet101': _cfg(url='', interpolation='bicubic'),
'resnet101d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth',
@ -706,6 +709,15 @@ def resnet50d(pretrained=False, **kwargs):
return _create_resnet('resnet50d', pretrained, **model_args)
@register_model
def resnet50t(pretrained=False, **kwargs):
"""Constructs a ResNet-50-T model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered', avg_down=True, **kwargs)
return _create_resnet('resnet50t', pretrained, **model_args)
@register_model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.

Loading…
Cancel
Save