|
|
@ -22,7 +22,10 @@ def _cfg(url='', **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
default_cfgs = {
|
|
|
|
'skresnet18': _cfg(url=''),
|
|
|
|
'skresnet18': _cfg(url=''),
|
|
|
|
'skresnet26d': _cfg()
|
|
|
|
'skresnet26d': _cfg(),
|
|
|
|
|
|
|
|
'skresnet50': _cfg(),
|
|
|
|
|
|
|
|
'skresnet50d': _cfg(),
|
|
|
|
|
|
|
|
'skresnext50_32x4d': _cfg(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -131,6 +134,41 @@ class SelectiveKernelBottleneck(nn.Module):
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a ResNet-18 model.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
default_cfg = default_cfgs['skresnet18']
|
|
|
|
|
|
|
|
sk_kwargs = dict(
|
|
|
|
|
|
|
|
min_attn_channels=16,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
model = ResNet(
|
|
|
|
|
|
|
|
SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans,
|
|
|
|
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def sksresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a ResNet-18 model.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
default_cfg = default_cfgs['skresnet18']
|
|
|
|
|
|
|
|
sk_kwargs = dict(
|
|
|
|
|
|
|
|
min_attn_channels=16,
|
|
|
|
|
|
|
|
split_input=True
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
model = ResNet(
|
|
|
|
|
|
|
|
SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans,
|
|
|
|
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a ResNet-26 model.
|
|
|
|
"""Constructs a ResNet-26 model.
|
|
|
@ -150,15 +188,17 @@ def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def skresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a ResNet-18 model.
|
|
|
|
"""Constructs a Select Kernel ResNet-50 model.
|
|
|
|
|
|
|
|
Based on config in "Compounding the Performance Improvements of Assembled Techniques in a
|
|
|
|
|
|
|
|
Convolutional Neural Network"
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['skresnet18']
|
|
|
|
|
|
|
|
sk_kwargs = dict(
|
|
|
|
sk_kwargs = dict(
|
|
|
|
min_attn_channels=16,
|
|
|
|
attn_reduction=2,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
default_cfg = default_cfgs['skresnet50']
|
|
|
|
model = ResNet(
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans,
|
|
|
|
SelectiveKernelBottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans,
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
if pretrained:
|
|
|
@ -167,17 +207,33 @@ def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def sksresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def skresnet50d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a ResNet-18 model.
|
|
|
|
"""Constructs a Select Kernel ResNet-50-D model.
|
|
|
|
|
|
|
|
Based on config in "Compounding the Performance Improvements of Assembled Techniques in a
|
|
|
|
|
|
|
|
Convolutional Neural Network"
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['skresnet18']
|
|
|
|
|
|
|
|
sk_kwargs = dict(
|
|
|
|
sk_kwargs = dict(
|
|
|
|
min_attn_channels=16,
|
|
|
|
attn_reduction=2,
|
|
|
|
split_input=True
|
|
|
|
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
default_cfg = default_cfgs['skresnet50d']
|
|
|
|
model = ResNet(
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans,
|
|
|
|
SelectiveKernelBottleneck, [3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def skresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to
|
|
|
|
|
|
|
|
the SKNet50 model in the Select Kernel Paper
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
default_cfg = default_cfgs['skresnext50_32x4d']
|
|
|
|
|
|
|
|
model = ResNet(
|
|
|
|
|
|
|
|
SelectiveKernelBottleneck, [3, 4, 6, 3], cardinality=32, base_width=4,
|
|
|
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|