diff --git a/timm/models/sknet.py b/timm/models/sknet.py index 7cf4fbe6..0c387e39 100644 --- a/timm/models/sknet.py +++ b/timm/models/sknet.py @@ -22,7 +22,10 @@ def _cfg(url='', **kwargs): default_cfgs = { 'skresnet18': _cfg(url=''), - 'skresnet26d': _cfg() + 'skresnet26d': _cfg(), + 'skresnet50': _cfg(), + 'skresnet50d': _cfg(), + 'skresnext50_32x4d': _cfg(), } @@ -131,6 +134,41 @@ class SelectiveKernelBottleneck(nn.Module): return x +@register_model +def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): + """Constructs a ResNet-18 model. + """ + default_cfg = default_cfgs['skresnet18'] + sk_kwargs = dict( + min_attn_channels=16, + ) + model = ResNet( + SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, + block_args=dict(sk_kwargs=sk_kwargs), **kwargs) + model.default_cfg = default_cfg + if pretrained: + load_pretrained(model, default_cfg, num_classes, in_chans) + return model + + +@register_model +def sksresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): + """Constructs a ResNet-18 model. + """ + default_cfg = default_cfgs['skresnet18'] + sk_kwargs = dict( + min_attn_channels=16, + split_input=True + ) + model = ResNet( + SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, + block_args=dict(sk_kwargs=sk_kwargs), **kwargs) + model.default_cfg = default_cfg + if pretrained: + load_pretrained(model, default_cfg, num_classes, in_chans) + return model + + @register_model def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-26 model. @@ -150,15 +188,17 @@ def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): @register_model -def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): - """Constructs a ResNet-18 model. +def skresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs): + """Constructs a Select Kernel ResNet-50 model. + Based on config in "Compounding the Performance Improvements of Assembled Techniques in a + Convolutional Neural Network" """ - default_cfg = default_cfgs['skresnet18'] sk_kwargs = dict( - min_attn_channels=16, + attn_reduction=2, ) + default_cfg = default_cfgs['skresnet50'] model = ResNet( - SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, + SelectiveKernelBottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), **kwargs) model.default_cfg = default_cfg if pretrained: @@ -167,18 +207,34 @@ def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): @register_model -def sksresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): - """Constructs a ResNet-18 model. +def skresnet50d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): + """Constructs a Select Kernel ResNet-50-D model. + Based on config in "Compounding the Performance Improvements of Assembled Techniques in a + Convolutional Neural Network" """ - default_cfg = default_cfgs['skresnet18'] sk_kwargs = dict( - min_attn_channels=16, - split_input=True + attn_reduction=2, ) + default_cfg = default_cfgs['skresnet50d'] model = ResNet( - SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, - block_args=dict(sk_kwargs=sk_kwargs), **kwargs) + SelectiveKernelBottleneck, [3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, + num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), **kwargs) + model.default_cfg = default_cfg + if pretrained: + load_pretrained(model, default_cfg, num_classes, in_chans) + return model + + +@register_model +def skresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): + """Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to + the SKNet50 model in the Select Kernel Paper + """ + default_cfg = default_cfgs['skresnext50_32x4d'] + model = ResNet( + SelectiveKernelBottleneck, [3, 4, 6, 3], cardinality=32, base_width=4, + num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) - return model \ No newline at end of file + return model