Update davit.py

pull/1630/head
Fredo Guan 3 years ago
parent f42ee614a7
commit 7861c9dbf7

@ -548,12 +548,34 @@ class DaViT(nn.Module):
global_pool = self.head.global_pool.pool_type global_pool = self.head.global_pool.pool_type
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
def forward_network(self, x : Tensor):
def forward_features(self, x):
#x, sizes = self.forward_network(x)
size: Tuple[int, int] = (x.size(2), x.size(3)) size: Tuple[int, int] = (x.size(2), x.size(3))
x, size = self.stages(x, size) features = [x]
sizes = [size]
for stage in self.stages:
features[-1], sizes[-1] = stage(features[-1], sizes[-1])
# don't append outputs of last stage, since they are already there
if(len(features) < self.num_stages):
features.append(features[-1])
sizes.append(sizes[-1])
# non-normalized pyramid features + corresponding sizes
return features, sizes
def forward_pyramid_features(self, x) -> List[Tensor]:
x, sizes = self.forward_network(x)
outs = []
for i, out in enumerate(x):
H, W = sizes[i]
outs.append(out.view(-1, H, W, self.embed_dims[i]).permute(0, 3, 1, 2).contiguous())
return outs
def forward_features(self, x):
x, sizes = self.forward_network(x)
# take final feature and norm
x = self.norms(x) x = self.norms(x)
H, W = size H, W = size
x = x.view(-1, H, W, self.embed_dims[-1]).permute(0, 3, 1, 2).contiguous() x = x.view(-1, H, W, self.embed_dims[-1]).permute(0, 3, 1, 2).contiguous()
@ -570,6 +592,14 @@ class DaViT(nn.Module):
def forward(self, x): def forward(self, x):
return self.forward_classifier(x) return self.forward_classifier(x)
class DaViTFeatures(DaViT):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.feature_info = FeatureInfo(self.feature_info, kwargs.get('out_indices', (0, 1, 2, 3)))
def forward(self, x) -> List[Tensor]:
return self.forward_pyramid_features(x)
def checkpoint_filter_fn(state_dict, model): def checkpoint_filter_fn(state_dict, model):
""" Remap MSFT checkpoints -> timm """ """ Remap MSFT checkpoints -> timm """
@ -593,18 +623,30 @@ def checkpoint_filter_fn(state_dict, model):
def _create_davit(variant, pretrained=False, **kwargs): def _create_davit(variant, pretrained=False, **kwargs):
model_cls = DaViT
features_only = False
kwargs_filter = None
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1)))) default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1))))
out_indices = kwargs.pop('out_indices', default_out_indices) out_indices = kwargs.pop('out_indices', default_out_indices)
if kwargs.pop('features_only', False):
model_cls = DaViTFeatures
kwargs_filter = ('num_classes', 'global_pool')
features_only = True
model = build_model_with_cfg( model = build_model_with_cfg(
DaViT, model_cls,
variant, variant,
pretrained, pretrained,
pretrained_filter_fn=checkpoint_filter_fn, pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
**kwargs) **kwargs)
if features_only:
model.pretrained_cfg = pretrained_cfg_for_features(model.default_cfg)
model.default_cfg = model.pretrained_cfg # backwards compat
return model return model
def _cfg(url='', **kwargs): # not sure how this should be set up def _cfg(url='', **kwargs): # not sure how this should be set up
return { return {
'url': url, 'url': url,

Loading…
Cancel
Save