From 7861c9dbf71b64352b4ca47aab345b8d3def9a33 Mon Sep 17 00:00:00 2001 From: Fredo Guan Date: Sat, 10 Dec 2022 05:43:39 -0800 Subject: [PATCH] Update davit.py --- timm/models/davit.py | 54 +++++++++++++++++++++++++++++++++++++++----- 1 file changed, 48 insertions(+), 6 deletions(-) diff --git a/timm/models/davit.py b/timm/models/davit.py index 94c7c8dd..91e5f50a 100644 --- a/timm/models/davit.py +++ b/timm/models/davit.py @@ -548,12 +548,34 @@ class DaViT(nn.Module): global_pool = self.head.global_pool.pool_type self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) - - def forward_features(self, x): - #x, sizes = self.forward_network(x) + def forward_network(self, x : Tensor): size: Tuple[int, int] = (x.size(2), x.size(3)) - x, size = self.stages(x, size) + features = [x] + sizes = [size] + for stage in self.stages: + features[-1], sizes[-1] = stage(features[-1], sizes[-1]) + + # don't append outputs of last stage, since they are already there + if(len(features) < self.num_stages): + features.append(features[-1]) + sizes.append(sizes[-1]) + + + # non-normalized pyramid features + corresponding sizes + return features, sizes + + def forward_pyramid_features(self, x) -> List[Tensor]: + x, sizes = self.forward_network(x) + outs = [] + for i, out in enumerate(x): + H, W = sizes[i] + outs.append(out.view(-1, H, W, self.embed_dims[i]).permute(0, 3, 1, 2).contiguous()) + return outs + + def forward_features(self, x): + x, sizes = self.forward_network(x) + # take final feature and norm x = self.norms(x) H, W = size x = x.view(-1, H, W, self.embed_dims[-1]).permute(0, 3, 1, 2).contiguous() @@ -570,6 +592,14 @@ class DaViT(nn.Module): def forward(self, x): return self.forward_classifier(x) +class DaViTFeatures(DaViT): + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.feature_info = FeatureInfo(self.feature_info, kwargs.get('out_indices', (0, 1, 2, 3))) + + def forward(self, x) -> List[Tensor]: + return self.forward_pyramid_features(x) def checkpoint_filter_fn(state_dict, model): """ Remap MSFT checkpoints -> timm """ @@ -593,17 +623,29 @@ def checkpoint_filter_fn(state_dict, model): def _create_davit(variant, pretrained=False, **kwargs): + model_cls = DaViT + features_only = False + kwargs_filter = None + default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1)))) out_indices = kwargs.pop('out_indices', default_out_indices) + if kwargs.pop('features_only', False): + model_cls = DaViTFeatures + kwargs_filter = ('num_classes', 'global_pool') + features_only = True model = build_model_with_cfg( - DaViT, + model_cls, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + if features_only: + model.pretrained_cfg = pretrained_cfg_for_features(model.default_cfg) + model.default_cfg = model.pretrained_cfg # backwards compat return model - + + def _cfg(url='', **kwargs): # not sure how this should be set up return {