|
|
|
@ -600,7 +600,7 @@ def _gen_mnasnet_a1(variant, channel_multiplier=1.0, pretrained=False, **kwargs)
|
|
|
|
|
block_args=decode_arch_def(arch_def),
|
|
|
|
|
stem_size=32,
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
**kwargs
|
|
|
|
|
)
|
|
|
|
|
model = _create_effnet(variant, pretrained, **model_kwargs)
|
|
|
|
@ -636,7 +636,7 @@ def _gen_mnasnet_b1(variant, channel_multiplier=1.0, pretrained=False, **kwargs)
|
|
|
|
|
block_args=decode_arch_def(arch_def),
|
|
|
|
|
stem_size=32,
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
**kwargs
|
|
|
|
|
)
|
|
|
|
|
model = _create_effnet(variant, pretrained, **model_kwargs)
|
|
|
|
@ -665,7 +665,7 @@ def _gen_mnasnet_small(variant, channel_multiplier=1.0, pretrained=False, **kwar
|
|
|
|
|
block_args=decode_arch_def(arch_def),
|
|
|
|
|
stem_size=8,
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
**kwargs
|
|
|
|
|
)
|
|
|
|
|
model = _create_effnet(variant, pretrained, **model_kwargs)
|
|
|
|
@ -694,7 +694,7 @@ def _gen_mobilenet_v2(
|
|
|
|
|
stem_size=32,
|
|
|
|
|
fix_stem=fix_stem_head,
|
|
|
|
|
round_chs_fn=round_chs_fn,
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'relu6'),
|
|
|
|
|
**kwargs
|
|
|
|
|
)
|
|
|
|
@ -725,7 +725,7 @@ def _gen_fbnetc(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
|
|
|
|
|
stem_size=16,
|
|
|
|
|
num_features=1984, # paper suggests this, but is not 100% clear
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
**kwargs
|
|
|
|
|
)
|
|
|
|
|
model = _create_effnet(variant, pretrained, **model_kwargs)
|
|
|
|
@ -760,7 +760,7 @@ def _gen_spnasnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
|
|
|
|
|
block_args=decode_arch_def(arch_def),
|
|
|
|
|
stem_size=32,
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
**kwargs
|
|
|
|
|
)
|
|
|
|
|
model = _create_effnet(variant, pretrained, **model_kwargs)
|
|
|
|
@ -807,7 +807,7 @@ def _gen_efficientnet(variant, channel_multiplier=1.0, depth_multiplier=1.0, pre
|
|
|
|
|
stem_size=32,
|
|
|
|
|
round_chs_fn=round_chs_fn,
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'swish'),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
model = _create_effnet(variant, pretrained, **model_kwargs)
|
|
|
|
@ -836,7 +836,7 @@ def _gen_efficientnet_edge(variant, channel_multiplier=1.0, depth_multiplier=1.0
|
|
|
|
|
num_features=round_chs_fn(1280),
|
|
|
|
|
stem_size=32,
|
|
|
|
|
round_chs_fn=round_chs_fn,
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'relu'),
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
@ -867,7 +867,7 @@ def _gen_efficientnet_condconv(
|
|
|
|
|
num_features=round_chs_fn(1280),
|
|
|
|
|
stem_size=32,
|
|
|
|
|
round_chs_fn=round_chs_fn,
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'swish'),
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
@ -909,7 +909,7 @@ def _gen_efficientnet_lite(variant, channel_multiplier=1.0, depth_multiplier=1.0
|
|
|
|
|
fix_stem=True,
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'relu6'),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
model = _create_effnet(variant, pretrained, **model_kwargs)
|
|
|
|
@ -937,7 +937,7 @@ def _gen_efficientnetv2_base(
|
|
|
|
|
num_features=round_chs_fn(1280),
|
|
|
|
|
stem_size=32,
|
|
|
|
|
round_chs_fn=round_chs_fn,
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'silu'),
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
@ -976,7 +976,7 @@ def _gen_efficientnetv2_s(
|
|
|
|
|
num_features=round_chs_fn(num_features),
|
|
|
|
|
stem_size=24,
|
|
|
|
|
round_chs_fn=round_chs_fn,
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'silu'),
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
@ -1006,7 +1006,7 @@ def _gen_efficientnetv2_m(variant, channel_multiplier=1.0, depth_multiplier=1.0,
|
|
|
|
|
num_features=1280,
|
|
|
|
|
stem_size=24,
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'silu'),
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
@ -1036,7 +1036,7 @@ def _gen_efficientnetv2_l(variant, channel_multiplier=1.0, depth_multiplier=1.0,
|
|
|
|
|
num_features=1280,
|
|
|
|
|
stem_size=32,
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'silu'),
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
@ -1066,7 +1066,7 @@ def _gen_efficientnetv2_xl(variant, channel_multiplier=1.0, depth_multiplier=1.0
|
|
|
|
|
num_features=1280,
|
|
|
|
|
stem_size=32,
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'silu'),
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
@ -1100,7 +1100,7 @@ def _gen_mixnet_s(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
|
|
|
|
|
num_features=1536,
|
|
|
|
|
stem_size=16,
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
**kwargs
|
|
|
|
|
)
|
|
|
|
|
model = _create_effnet(variant, pretrained, **model_kwargs)
|
|
|
|
@ -1133,7 +1133,7 @@ def _gen_mixnet_m(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrai
|
|
|
|
|
num_features=1536,
|
|
|
|
|
stem_size=24,
|
|
|
|
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
|
|
|
|
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
|
|
|
|
**kwargs
|
|
|
|
|
)
|
|
|
|
|
model = _create_effnet(variant, pretrained, **model_kwargs)
|
|
|
|
|