|
|
|
@ -33,7 +33,7 @@ import torch
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
|
from .helpers import build_model_with_cfg
|
|
|
|
|
from .helpers import build_model_with_cfg, named_apply
|
|
|
|
|
from .layers import ClassifierHead, ConvBnAct, BatchNormAct2d, DropPath, AvgPool2dSame, \
|
|
|
|
|
create_conv2d, get_act_layer, convert_norm_act, get_attn, make_divisible, to_2tuple
|
|
|
|
|
from .registry import register_model
|
|
|
|
@ -93,19 +93,50 @@ default_cfgs = {
|
|
|
|
|
first_conv='stem.conv1', input_size=(3, 256, 256), pool_size=(8, 8),
|
|
|
|
|
test_input_size=(3, 288, 288), crop_pct=1.0),
|
|
|
|
|
'resnet61q': _cfg(
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
'geresnet50t': _cfg(
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
'gcresnet50t': _cfg(
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet61q_ra2-6afc536c.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8),
|
|
|
|
|
test_input_size=(3, 288, 288), crop_pct=1.0, interpolation='bicubic'),
|
|
|
|
|
|
|
|
|
|
'resnext26ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnext26ts_256_ra2-8bbd9106.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
'gcresnext26ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext26ts_256-e414378b.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
'seresnext26ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnext26ts_256-6f0d74a3.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
'gcresnet26ts': _cfg(
|
|
|
|
|
'eca_resnext26ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnext26ts_256-5a1d030f.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
'bat_resnext26ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/bat_resnext26ts_256-fa6fd595.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic',
|
|
|
|
|
min_input_size=(3, 256, 256)),
|
|
|
|
|
|
|
|
|
|
'resnet32ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet32ts_256-aacf5250.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
'resnet33ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet33ts_256-e91b09a4.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
'gcresnet33ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet33ts_256-0e0cd345.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
'seresnet33ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnet33ts_256-f8ad44d9.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
'eca_resnet33ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnet33ts_256-8f98face.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
|
|
|
|
|
'gcresnet50t': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet50t_256-96374d1c.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
|
|
|
|
|
'gcresnext50ts': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext50ts_256-3e0f515e.pth',
|
|
|
|
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -135,7 +166,7 @@ class ByoModelCfg:
|
|
|
|
|
stem_chs: int = 32
|
|
|
|
|
width_factor: float = 1.0
|
|
|
|
|
num_features: int = 0 # num out_channels for final conv, no final 1x1 conv if 0
|
|
|
|
|
zero_init_last_bn: bool = True
|
|
|
|
|
zero_init_last: bool = True # zero init last weight (usually bn) in residual path
|
|
|
|
|
fixed_input_size: bool = False # model constrained to a fixed-input size / img_size must be provided on creation
|
|
|
|
|
|
|
|
|
|
act_layer: str = 'relu'
|
|
|
|
@ -159,13 +190,13 @@ def _rep_vgg_bcfg(d=(4, 6, 16, 1), wf=(1., 1., 1., 1.), groups=0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def interleave_blocks(
|
|
|
|
|
types: Tuple[str, str], every: Union[int, List[int]], d, first: bool = False, **kwargs
|
|
|
|
|
types: Tuple[str, str], d, every: Union[int, List[int]] = 1, first: bool = False, **kwargs
|
|
|
|
|
) -> Tuple[ByoBlockCfg]:
|
|
|
|
|
""" interleave 2 block types in stack
|
|
|
|
|
"""
|
|
|
|
|
assert len(types) == 2
|
|
|
|
|
if isinstance(every, int):
|
|
|
|
|
every = list(range(0 if first else every, d, every))
|
|
|
|
|
every = list(range(0 if first else every, d, every + 1))
|
|
|
|
|
if not every:
|
|
|
|
|
every = [d - 1]
|
|
|
|
|
set(every)
|
|
|
|
@ -255,7 +286,8 @@ model_cfgs = dict(
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
# WARN: experimental, may vanish/change
|
|
|
|
|
# 4 x conv stem w/ 2 act, no maxpool, 2,4,6,4 repeats, group size 32 in first 3 blocks
|
|
|
|
|
# DW convs in last block, 2048 pre-FC, silu act
|
|
|
|
|
resnet51q=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
|
|
|
|
@ -270,6 +302,8 @@ model_cfgs = dict(
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
# 4 x conv stem w/ 4 act, no maxpool, 1,4,6,4 repeats, edge block first, group size 32 in next 2 blocks
|
|
|
|
|
# DW convs in last block, 4 conv for each bottle block, 2048 pre-FC, silu act
|
|
|
|
|
resnet61q=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='edge', d=1, c=256, s=1, gs=0, br=1.0, block_kwargs=dict()),
|
|
|
|
@ -285,53 +319,91 @@ model_cfgs = dict(
|
|
|
|
|
block_kwargs=dict(extra_conv=True),
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
# WARN: experimental, may vanish/change
|
|
|
|
|
geresnet50t=ByoModelCfg(
|
|
|
|
|
# A series of ResNeXt-26 models w/ one of none, GC, SE, ECA, BAT attn, group size 32, SiLU act,
|
|
|
|
|
# and a tiered stem w/ maxpool
|
|
|
|
|
resnext26ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='edge', d=3, c=256, s=1, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='edge', d=4, c=512, s=2, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool=None,
|
|
|
|
|
attn_layer='ge',
|
|
|
|
|
attn_kwargs=dict(extent=8, extra_params=True),
|
|
|
|
|
#attn_kwargs=dict(extent=8),
|
|
|
|
|
#block_kwargs=dict(attn_last=True)
|
|
|
|
|
stem_pool='maxpool',
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
# WARN: experimental, may vanish/change
|
|
|
|
|
gcresnet50t=ByoModelCfg(
|
|
|
|
|
gcresnext26ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool=None,
|
|
|
|
|
attn_layer='gc'
|
|
|
|
|
stem_pool='maxpool',
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
attn_layer='gca',
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
gcresnext26ts=ByoModelCfg(
|
|
|
|
|
seresnext26ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool='maxpool',
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
attn_layer='se',
|
|
|
|
|
),
|
|
|
|
|
eca_resnext26ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool='maxpool',
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
attn_layer='eca',
|
|
|
|
|
),
|
|
|
|
|
bat_resnext26ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool='maxpool',
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
attn_layer='bat',
|
|
|
|
|
attn_kwargs=dict(block_size=8)
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
# ResNet-32 (2, 3, 3, 2) models w/ no attn, no groups, SiLU act, no pre-fc feat layer, tiered stem w/o maxpool
|
|
|
|
|
resnet32ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool='',
|
|
|
|
|
num_features=0,
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
attn_layer='gc',
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
gcresnet26ts=ByoModelCfg(
|
|
|
|
|
# ResNet-33 (2, 3, 3, 2) models w/ no attn, no groups, SiLU act, 1280 pre-FC feat, tiered stem w/o maxpool
|
|
|
|
|
resnet33ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25),
|
|
|
|
@ -343,23 +415,79 @@ model_cfgs = dict(
|
|
|
|
|
stem_pool='',
|
|
|
|
|
num_features=1280,
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
attn_layer='gc',
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
bat_resnext26ts=ByoModelCfg(
|
|
|
|
|
# A series of ResNet-33 (2, 3, 3, 2) models w/ one of GC, SE, ECA attn, no groups, SiLU act, 1280 pre-FC feat
|
|
|
|
|
# and a tiered stem w/ no maxpool
|
|
|
|
|
gcresnet33ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool='',
|
|
|
|
|
num_features=1280,
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
attn_layer='gca',
|
|
|
|
|
),
|
|
|
|
|
seresnet33ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool='',
|
|
|
|
|
num_features=1280,
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
attn_layer='se',
|
|
|
|
|
),
|
|
|
|
|
eca_resnet33ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool='',
|
|
|
|
|
num_features=1280,
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
attn_layer='eca',
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
gcresnet50t=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool='',
|
|
|
|
|
attn_layer='gca',
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
gcresnext50ts=ByoModelCfg(
|
|
|
|
|
blocks=(
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, gs=32, br=0.25),
|
|
|
|
|
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, gs=32, br=0.25),
|
|
|
|
|
),
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
stem_pool='maxpool',
|
|
|
|
|
num_features=0,
|
|
|
|
|
# stem_pool=None,
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
attn_layer='bat',
|
|
|
|
|
attn_kwargs=dict(block_size=8)
|
|
|
|
|
attn_layer='gca',
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
@ -467,31 +595,31 @@ def resnet61q(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def geresnet50t(pretrained=False, **kwargs):
|
|
|
|
|
def resnext26ts(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('geresnet50t', pretrained=pretrained, **kwargs)
|
|
|
|
|
return _create_byobnet('resnext26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def gcresnet50t(pretrained=False, **kwargs):
|
|
|
|
|
def gcresnext26ts(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('gcresnet50t', pretrained=pretrained, **kwargs)
|
|
|
|
|
return _create_byobnet('gcresnext26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def gcresnext26ts(pretrained=False, **kwargs):
|
|
|
|
|
def seresnext26ts(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('gcresnext26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
return _create_byobnet('seresnext26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def gcresnet26ts(pretrained=False, **kwargs):
|
|
|
|
|
def eca_resnext26ts(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('gcresnet26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
return _create_byobnet('eca_resnext26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@ -501,6 +629,55 @@ def bat_resnext26ts(pretrained=False, **kwargs):
|
|
|
|
|
return _create_byobnet('bat_resnext26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def resnet32ts(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('resnet32ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def resnet33ts(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('resnet33ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def gcresnet33ts(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('gcresnet33ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def seresnet33ts(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('seresnet33ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def eca_resnet33ts(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('eca_resnet33ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def gcresnet50t(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('gcresnet50t', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def gcresnext50ts(pretrained=False, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('gcresnext50ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def expand_blocks_cfg(stage_blocks_cfg: Union[ByoBlockCfg, Sequence[ByoBlockCfg]]) -> List[ByoBlockCfg]:
|
|
|
|
|
if not isinstance(stage_blocks_cfg, Sequence):
|
|
|
|
|
stage_blocks_cfg = (stage_blocks_cfg,)
|
|
|
|
@ -580,8 +757,8 @@ class BasicBlock(nn.Module):
|
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
|
|
|
|
self.act = nn.Identity() if linear_out else layers.act(inplace=True)
|
|
|
|
|
|
|
|
|
|
def init_weights(self, zero_init_last_bn: bool = False):
|
|
|
|
|
if zero_init_last_bn:
|
|
|
|
|
def init_weights(self, zero_init_last: bool = False):
|
|
|
|
|
if zero_init_last:
|
|
|
|
|
nn.init.zeros_(self.conv2_kxk.bn.weight)
|
|
|
|
|
for attn in (self.attn, self.attn_last):
|
|
|
|
|
if hasattr(attn, 'reset_parameters'):
|
|
|
|
@ -637,8 +814,8 @@ class BottleneckBlock(nn.Module):
|
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
|
|
|
|
self.act = nn.Identity() if linear_out else layers.act(inplace=True)
|
|
|
|
|
|
|
|
|
|
def init_weights(self, zero_init_last_bn: bool = False):
|
|
|
|
|
if zero_init_last_bn:
|
|
|
|
|
def init_weights(self, zero_init_last: bool = False):
|
|
|
|
|
if zero_init_last:
|
|
|
|
|
nn.init.zeros_(self.conv3_1x1.bn.weight)
|
|
|
|
|
for attn in (self.attn, self.attn_last):
|
|
|
|
|
if hasattr(attn, 'reset_parameters'):
|
|
|
|
@ -694,8 +871,8 @@ class DarkBlock(nn.Module):
|
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
|
|
|
|
self.act = nn.Identity() if linear_out else layers.act(inplace=True)
|
|
|
|
|
|
|
|
|
|
def init_weights(self, zero_init_last_bn: bool = False):
|
|
|
|
|
if zero_init_last_bn:
|
|
|
|
|
def init_weights(self, zero_init_last: bool = False):
|
|
|
|
|
if zero_init_last:
|
|
|
|
|
nn.init.zeros_(self.conv2_kxk.bn.weight)
|
|
|
|
|
for attn in (self.attn, self.attn_last):
|
|
|
|
|
if hasattr(attn, 'reset_parameters'):
|
|
|
|
@ -747,8 +924,8 @@ class EdgeBlock(nn.Module):
|
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
|
|
|
|
self.act = nn.Identity() if linear_out else layers.act(inplace=True)
|
|
|
|
|
|
|
|
|
|
def init_weights(self, zero_init_last_bn: bool = False):
|
|
|
|
|
if zero_init_last_bn:
|
|
|
|
|
def init_weights(self, zero_init_last: bool = False):
|
|
|
|
|
if zero_init_last:
|
|
|
|
|
nn.init.zeros_(self.conv2_1x1.bn.weight)
|
|
|
|
|
for attn in (self.attn, self.attn_last):
|
|
|
|
|
if hasattr(attn, 'reset_parameters'):
|
|
|
|
@ -790,7 +967,7 @@ class RepVggBlock(nn.Module):
|
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity()
|
|
|
|
|
self.act = layers.act(inplace=True)
|
|
|
|
|
|
|
|
|
|
def init_weights(self, zero_init_last_bn: bool = False):
|
|
|
|
|
def init_weights(self, zero_init_last: bool = False):
|
|
|
|
|
# NOTE this init overrides that base model init with specific changes for the block type
|
|
|
|
|
for m in self.modules():
|
|
|
|
|
if isinstance(m, nn.BatchNorm2d):
|
|
|
|
@ -847,8 +1024,8 @@ class SelfAttnBlock(nn.Module):
|
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
|
|
|
|
self.act = nn.Identity() if linear_out else layers.act(inplace=True)
|
|
|
|
|
|
|
|
|
|
def init_weights(self, zero_init_last_bn: bool = False):
|
|
|
|
|
if zero_init_last_bn:
|
|
|
|
|
def init_weights(self, zero_init_last: bool = False):
|
|
|
|
|
if zero_init_last:
|
|
|
|
|
nn.init.zeros_(self.conv3_1x1.bn.weight)
|
|
|
|
|
if hasattr(self.self_attn, 'reset_parameters'):
|
|
|
|
|
self.self_attn.reset_parameters()
|
|
|
|
@ -990,27 +1167,29 @@ def update_block_kwargs(block_kwargs: Dict[str, Any], block_cfg: ByoBlockCfg, mo
|
|
|
|
|
layer_fns = block_kwargs['layers']
|
|
|
|
|
|
|
|
|
|
# override attn layer / args with block local config
|
|
|
|
|
if block_cfg.attn_kwargs is not None or block_cfg.attn_layer is not None:
|
|
|
|
|
attn_set = block_cfg.attn_layer is not None
|
|
|
|
|
if attn_set or block_cfg.attn_kwargs is not None:
|
|
|
|
|
# override attn layer config
|
|
|
|
|
if not block_cfg.attn_layer:
|
|
|
|
|
if attn_set and not block_cfg.attn_layer:
|
|
|
|
|
# empty string for attn_layer type will disable attn for this block
|
|
|
|
|
attn_layer = None
|
|
|
|
|
else:
|
|
|
|
|
attn_kwargs = override_kwargs(block_cfg.attn_kwargs, model_cfg.attn_kwargs)
|
|
|
|
|
attn_layer = block_cfg.attn_layer or model_cfg.attn_layer
|
|
|
|
|
attn_layer = partial(get_attn(attn_layer), *attn_kwargs) if attn_layer is not None else None
|
|
|
|
|
attn_layer = partial(get_attn(attn_layer), **attn_kwargs) if attn_layer is not None else None
|
|
|
|
|
layer_fns = replace(layer_fns, attn=attn_layer)
|
|
|
|
|
|
|
|
|
|
# override self-attn layer / args with block local cfg
|
|
|
|
|
if block_cfg.self_attn_kwargs is not None or block_cfg.self_attn_layer is not None:
|
|
|
|
|
self_attn_set = block_cfg.self_attn_layer is not None
|
|
|
|
|
if self_attn_set or block_cfg.self_attn_kwargs is not None:
|
|
|
|
|
# override attn layer config
|
|
|
|
|
if not block_cfg.self_attn_layer:
|
|
|
|
|
if self_attn_set and not block_cfg.self_attn_layer: # attn_layer == ''
|
|
|
|
|
# empty string for self_attn_layer type will disable attn for this block
|
|
|
|
|
self_attn_layer = None
|
|
|
|
|
else:
|
|
|
|
|
self_attn_kwargs = override_kwargs(block_cfg.self_attn_kwargs, model_cfg.self_attn_kwargs)
|
|
|
|
|
self_attn_layer = block_cfg.self_attn_layer or model_cfg.self_attn_layer
|
|
|
|
|
self_attn_layer = partial(get_attn(self_attn_layer), *self_attn_kwargs) \
|
|
|
|
|
self_attn_layer = partial(get_attn(self_attn_layer), **self_attn_kwargs) \
|
|
|
|
|
if self_attn_layer is not None else None
|
|
|
|
|
layer_fns = replace(layer_fns, self_attn=self_attn_layer)
|
|
|
|
|
|
|
|
|
@ -1099,7 +1278,7 @@ class ByobNet(nn.Module):
|
|
|
|
|
Current assumption is that both stem and blocks are in conv-bn-act order (w/ block ending in act).
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, cfg: ByoModelCfg, num_classes=1000, in_chans=3, global_pool='avg', output_stride=32,
|
|
|
|
|
zero_init_last_bn=True, img_size=None, drop_rate=0., drop_path_rate=0.):
|
|
|
|
|
zero_init_last=True, img_size=None, drop_rate=0., drop_path_rate=0.):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
@ -1130,12 +1309,8 @@ class ByobNet(nn.Module):
|
|
|
|
|
|
|
|
|
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
|
|
|
|
|
|
|
|
|
for n, m in self.named_modules():
|
|
|
|
|
_init_weights(m, n)
|
|
|
|
|
for m in self.modules():
|
|
|
|
|
# call each block's weight init for block-specific overrides to init above
|
|
|
|
|
if hasattr(m, 'init_weights'):
|
|
|
|
|
m.init_weights(zero_init_last_bn=zero_init_last_bn)
|
|
|
|
|
# init weights
|
|
|
|
|
named_apply(partial(_init_weights, zero_init_last=zero_init_last), self)
|
|
|
|
|
|
|
|
|
|
def get_classifier(self):
|
|
|
|
|
return self.head.fc
|
|
|
|
@ -1155,20 +1330,22 @@ class ByobNet(nn.Module):
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _init_weights(m, n=''):
|
|
|
|
|
if isinstance(m, nn.Conv2d):
|
|
|
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
|
|
|
fan_out //= m.groups
|
|
|
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
|
|
|
if m.bias is not None:
|
|
|
|
|
m.bias.data.zero_()
|
|
|
|
|
elif isinstance(m, nn.Linear):
|
|
|
|
|
nn.init.normal_(m.weight, mean=0.0, std=0.01)
|
|
|
|
|
if m.bias is not None:
|
|
|
|
|
nn.init.zeros_(m.bias)
|
|
|
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
|
|
|
nn.init.ones_(m.weight)
|
|
|
|
|
nn.init.zeros_(m.bias)
|
|
|
|
|
def _init_weights(module, name='', zero_init_last=False):
|
|
|
|
|
if isinstance(module, nn.Conv2d):
|
|
|
|
|
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
|
|
|
|
|
fan_out //= module.groups
|
|
|
|
|
module.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
|
|
|
if module.bias is not None:
|
|
|
|
|
module.bias.data.zero_()
|
|
|
|
|
elif isinstance(module, nn.Linear):
|
|
|
|
|
nn.init.normal_(module.weight, mean=0.0, std=0.01)
|
|
|
|
|
if module.bias is not None:
|
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
|
elif isinstance(module, nn.BatchNorm2d):
|
|
|
|
|
nn.init.ones_(module.weight)
|
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
|
elif hasattr(module, 'init_weights'):
|
|
|
|
|
module.init_weights(zero_init_last=zero_init_last)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _create_byobnet(variant, pretrained=False, **kwargs):
|
|
|
|
|