Fix torchscript use for offician Swin-V2, add support for non-square window/shift to WindowAttn/Block

pull/1259/head
Ross Wightman 3 years ago
parent 2f2b22d8c7
commit 27c42f0830

@ -13,6 +13,7 @@ Modifications and additions for timm hacked together by / Copyright 2022, Ross W
# Written by Ze Liu # Written by Ze Liu
# -------------------------------------------------------- # --------------------------------------------------------
import math import math
from typing import Tuple, Optional
import torch import torch
import torch.nn as nn import torch.nn as nn
@ -91,7 +92,7 @@ default_cfgs = {
} }
def window_partition(x, window_size): def window_partition(x, window_size: Tuple[int, int]):
""" """
Args: Args:
x: (B, H, W, C) x: (B, H, W, C)
@ -101,25 +102,25 @@ def window_partition(x, window_size):
windows: (num_windows*B, window_size, window_size, C) windows: (num_windows*B, window_size, window_size, C)
""" """
B, H, W, C = x.shape B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows return windows
@register_notrace_function # reason: int argument is a Proxy @register_notrace_function # reason: int argument is a Proxy
def window_reverse(windows, window_size, H, W): def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]):
""" """
Args: Args:
windows: (num_windows*B, window_size, window_size, C) windows: (num_windows * B, window_size[0], window_size[1], C)
window_size (int): Window size window_size (Tuple[int, int]): Window size
H (int): Height of image img_size (Tuple[int, int]): Image size
W (int): Width of image
Returns: Returns:
x: (B, H, W, C) x: (B, H, W, C)
""" """
B = int(windows.shape[0] / (H * W / window_size / window_size)) H, W = img_size
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1]))
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x return x
@ -148,7 +149,7 @@ class WindowAttention(nn.Module):
self.pretrained_window_size = pretrained_window_size self.pretrained_window_size = pretrained_window_size
self.num_heads = num_heads self.num_heads = num_heads
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
# mlp to generate continuous relative position bias # mlp to generate continuous relative position bias
self.cpb_mlp = nn.Sequential( self.cpb_mlp = nn.Sequential(
@ -202,7 +203,7 @@ class WindowAttention(nn.Module):
self.proj_drop = nn.Dropout(proj_drop) self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1) self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None): def forward(self, x, mask: Optional[torch.Tensor] = None):
""" """
Args: Args:
x: input features with shape of (num_windows*B, N, C) x: input features with shape of (num_windows*B, N, C)
@ -218,7 +219,7 @@ class WindowAttention(nn.Module):
# cosine attention # cosine attention
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp() logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp()
attn = attn * logit_scale attn = attn * logit_scale
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
@ -269,16 +270,13 @@ class SwinTransformerBlock(nn.Module):
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0): act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
super().__init__() super().__init__()
self.dim = dim self.dim = dim
self.input_resolution = input_resolution self.input_resolution = to_2tuple(input_resolution)
self.num_heads = num_heads self.num_heads = num_heads
self.window_size = window_size ws, ss = self._calc_window_shift(window_size, shift_size)
self.shift_size = shift_size self.window_size: Tuple[int, int] = ws
self.shift_size: Tuple[int, int] = ss
self.window_area = self.window_size[0] * self.window_size[1]
self.mlp_ratio = mlp_ratio self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
_assert(0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size")
self.attn = WindowAttention( self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
@ -291,23 +289,23 @@ class SwinTransformerBlock(nn.Module):
self.norm2 = norm_layer(dim) self.norm2 = norm_layer(dim)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
if self.shift_size > 0: if any(self.shift_size):
# calculate attention mask for SW-MSA # calculate attention mask for SW-MSA
H, W = self.input_resolution H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
cnt = 0 cnt = 0
for h in ( for h in (
slice(0, -self.window_size), slice(0, -self.window_size[0]),
slice(-self.window_size, -self.shift_size), slice(-self.window_size[0], -self.shift_size[0]),
slice(-self.shift_size, None)): slice(-self.shift_size[0], None)):
for w in ( for w in (
slice(0, -self.window_size), slice(0, -self.window_size[1]),
slice(-self.window_size, -self.shift_size), slice(-self.window_size[1], -self.shift_size[1]),
slice(-self.shift_size, None)): slice(-self.shift_size[1], None)):
img_mask[:, h, w, :] = cnt img_mask[:, h, w, :] = cnt
cnt += 1 cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) mask_windows = mask_windows.view(-1, self.window_area)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else: else:
@ -315,6 +313,13 @@ class SwinTransformerBlock(nn.Module):
self.register_buffer("attn_mask", attn_mask) self.register_buffer("attn_mask", attn_mask)
def _calc_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]:
target_window_size = to_2tuple(target_window_size)
target_shift_size = to_2tuple(target_shift_size)
window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)]
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
return tuple(window_size), tuple(shift_size)
def _attn(self, x): def _attn(self, x):
H, W = self.input_resolution H, W = self.input_resolution
B, L, C = x.shape B, L, C = x.shape
@ -322,25 +327,26 @@ class SwinTransformerBlock(nn.Module):
x = x.view(B, H, W, C) x = x.view(B, H, W, C)
# cyclic shift # cyclic shift
if self.shift_size > 0: has_shift = any(self.shift_size)
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) if has_shift:
shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2))
else: else:
shifted_x = x shifted_x = x
# partition windows # partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C x_windows = x_windows.view(-1, self.window_area, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA # W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows # merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C shifted_x = window_reverse(attn_windows, self.window_size, self.input_resolution) # B H' W' C
# reverse cyclic shift # reverse cyclic shift
if self.shift_size > 0: if has_shift:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2))
else: else:
x = shifted_x x = shifted_x
x = x.view(B, H * W, C) x = x.view(B, H * W, C)
@ -445,7 +451,7 @@ class BasicLayer(nn.Module):
def forward(self, x): def forward(self, x):
for blk in self.blocks: for blk in self.blocks:
if self.grad_checkpointing: if not torch.jit.is_scripting() and self.grad_checkpointing:
x = checkpoint.checkpoint(blk, x) x = checkpoint.checkpoint(blk, x)
else: else:
x = blk(x) x = blk(x)

Loading…
Cancel
Save