|
|
@ -13,6 +13,7 @@ Modifications and additions for timm hacked together by / Copyright 2022, Ross W
|
|
|
|
# Written by Ze Liu
|
|
|
|
# Written by Ze Liu
|
|
|
|
# --------------------------------------------------------
|
|
|
|
# --------------------------------------------------------
|
|
|
|
import math
|
|
|
|
import math
|
|
|
|
|
|
|
|
from typing import Tuple, Optional
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn as nn
|
|
|
@ -91,7 +92,7 @@ default_cfgs = {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def window_partition(x, window_size):
|
|
|
|
def window_partition(x, window_size: Tuple[int, int]):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
Args:
|
|
|
|
x: (B, H, W, C)
|
|
|
|
x: (B, H, W, C)
|
|
|
@ -101,25 +102,25 @@ def window_partition(x, window_size):
|
|
|
|
windows: (num_windows*B, window_size, window_size, C)
|
|
|
|
windows: (num_windows*B, window_size, window_size, C)
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
B, H, W, C = x.shape
|
|
|
|
B, H, W, C = x.shape
|
|
|
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
|
|
|
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
|
|
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
|
|
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
|
|
|
return windows
|
|
|
|
return windows
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_notrace_function # reason: int argument is a Proxy
|
|
|
|
@register_notrace_function # reason: int argument is a Proxy
|
|
|
|
def window_reverse(windows, window_size, H, W):
|
|
|
|
def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
Args:
|
|
|
|
windows: (num_windows*B, window_size, window_size, C)
|
|
|
|
windows: (num_windows * B, window_size[0], window_size[1], C)
|
|
|
|
window_size (int): Window size
|
|
|
|
window_size (Tuple[int, int]): Window size
|
|
|
|
H (int): Height of image
|
|
|
|
img_size (Tuple[int, int]): Image size
|
|
|
|
W (int): Width of image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Returns:
|
|
|
|
x: (B, H, W, C)
|
|
|
|
x: (B, H, W, C)
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
|
|
|
H, W = img_size
|
|
|
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
|
|
|
B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1]))
|
|
|
|
|
|
|
|
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
|
|
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
|
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
@ -148,7 +149,7 @@ class WindowAttention(nn.Module):
|
|
|
|
self.pretrained_window_size = pretrained_window_size
|
|
|
|
self.pretrained_window_size = pretrained_window_size
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.num_heads = num_heads
|
|
|
|
|
|
|
|
|
|
|
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
|
|
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
|
|
|
|
|
|
|
|
|
|
|
# mlp to generate continuous relative position bias
|
|
|
|
# mlp to generate continuous relative position bias
|
|
|
|
self.cpb_mlp = nn.Sequential(
|
|
|
|
self.cpb_mlp = nn.Sequential(
|
|
|
@ -202,7 +203,7 @@ class WindowAttention(nn.Module):
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.softmax = nn.Softmax(dim=-1)
|
|
|
|
self.softmax = nn.Softmax(dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, mask=None):
|
|
|
|
def forward(self, x, mask: Optional[torch.Tensor] = None):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
Args:
|
|
|
|
x: input features with shape of (num_windows*B, N, C)
|
|
|
|
x: input features with shape of (num_windows*B, N, C)
|
|
|
@ -218,7 +219,7 @@ class WindowAttention(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
# cosine attention
|
|
|
|
# cosine attention
|
|
|
|
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
|
|
|
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
|
|
|
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
|
|
|
|
logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp()
|
|
|
|
attn = attn * logit_scale
|
|
|
|
attn = attn * logit_scale
|
|
|
|
|
|
|
|
|
|
|
|
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
|
|
|
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
|
|
@ -269,16 +270,13 @@ class SwinTransformerBlock(nn.Module):
|
|
|
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
|
|
|
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
|
|
|
|
super().__init__()
|
|
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
|
|
self.dim = dim
|
|
|
|
self.input_resolution = input_resolution
|
|
|
|
self.input_resolution = to_2tuple(input_resolution)
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.window_size = window_size
|
|
|
|
ws, ss = self._calc_window_shift(window_size, shift_size)
|
|
|
|
self.shift_size = shift_size
|
|
|
|
self.window_size: Tuple[int, int] = ws
|
|
|
|
|
|
|
|
self.shift_size: Tuple[int, int] = ss
|
|
|
|
|
|
|
|
self.window_area = self.window_size[0] * self.window_size[1]
|
|
|
|
self.mlp_ratio = mlp_ratio
|
|
|
|
self.mlp_ratio = mlp_ratio
|
|
|
|
if min(self.input_resolution) <= self.window_size:
|
|
|
|
|
|
|
|
# if window size is larger than input resolution, we don't partition windows
|
|
|
|
|
|
|
|
self.shift_size = 0
|
|
|
|
|
|
|
|
self.window_size = min(self.input_resolution)
|
|
|
|
|
|
|
|
_assert(0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.attn = WindowAttention(
|
|
|
|
self.attn = WindowAttention(
|
|
|
|
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
|
|
|
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
|
|
@ -291,23 +289,23 @@ class SwinTransformerBlock(nn.Module):
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
|
|
|
|
if self.shift_size > 0:
|
|
|
|
if any(self.shift_size):
|
|
|
|
# calculate attention mask for SW-MSA
|
|
|
|
# calculate attention mask for SW-MSA
|
|
|
|
H, W = self.input_resolution
|
|
|
|
H, W = self.input_resolution
|
|
|
|
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
|
|
|
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
|
|
|
cnt = 0
|
|
|
|
cnt = 0
|
|
|
|
for h in (
|
|
|
|
for h in (
|
|
|
|
slice(0, -self.window_size),
|
|
|
|
slice(0, -self.window_size[0]),
|
|
|
|
slice(-self.window_size, -self.shift_size),
|
|
|
|
slice(-self.window_size[0], -self.shift_size[0]),
|
|
|
|
slice(-self.shift_size, None)):
|
|
|
|
slice(-self.shift_size[0], None)):
|
|
|
|
for w in (
|
|
|
|
for w in (
|
|
|
|
slice(0, -self.window_size),
|
|
|
|
slice(0, -self.window_size[1]),
|
|
|
|
slice(-self.window_size, -self.shift_size),
|
|
|
|
slice(-self.window_size[1], -self.shift_size[1]),
|
|
|
|
slice(-self.shift_size, None)):
|
|
|
|
slice(-self.shift_size[1], None)):
|
|
|
|
img_mask[:, h, w, :] = cnt
|
|
|
|
img_mask[:, h, w, :] = cnt
|
|
|
|
cnt += 1
|
|
|
|
cnt += 1
|
|
|
|
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
|
|
|
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
|
|
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
|
|
|
mask_windows = mask_windows.view(-1, self.window_area)
|
|
|
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
|
|
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
|
|
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
|
|
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
|
|
|
else:
|
|
|
|
else:
|
|
|
@ -315,6 +313,13 @@ class SwinTransformerBlock(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
self.register_buffer("attn_mask", attn_mask)
|
|
|
|
self.register_buffer("attn_mask", attn_mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _calc_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]:
|
|
|
|
|
|
|
|
target_window_size = to_2tuple(target_window_size)
|
|
|
|
|
|
|
|
target_shift_size = to_2tuple(target_shift_size)
|
|
|
|
|
|
|
|
window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)]
|
|
|
|
|
|
|
|
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
|
|
|
|
|
|
|
|
return tuple(window_size), tuple(shift_size)
|
|
|
|
|
|
|
|
|
|
|
|
def _attn(self, x):
|
|
|
|
def _attn(self, x):
|
|
|
|
H, W = self.input_resolution
|
|
|
|
H, W = self.input_resolution
|
|
|
|
B, L, C = x.shape
|
|
|
|
B, L, C = x.shape
|
|
|
@ -322,25 +327,26 @@ class SwinTransformerBlock(nn.Module):
|
|
|
|
x = x.view(B, H, W, C)
|
|
|
|
x = x.view(B, H, W, C)
|
|
|
|
|
|
|
|
|
|
|
|
# cyclic shift
|
|
|
|
# cyclic shift
|
|
|
|
if self.shift_size > 0:
|
|
|
|
has_shift = any(self.shift_size)
|
|
|
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
|
|
|
if has_shift:
|
|
|
|
|
|
|
|
shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2))
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
shifted_x = x
|
|
|
|
shifted_x = x
|
|
|
|
|
|
|
|
|
|
|
|
# partition windows
|
|
|
|
# partition windows
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
|
|
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
|
|
|
x_windows = x_windows.view(-1, self.window_area, C) # nW*B, window_size*window_size, C
|
|
|
|
|
|
|
|
|
|
|
|
# W-MSA/SW-MSA
|
|
|
|
# W-MSA/SW-MSA
|
|
|
|
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
|
|
|
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
|
|
|
|
|
|
|
|
|
|
|
# merge windows
|
|
|
|
# merge windows
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
|
|
|
|
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
|
|
|
shifted_x = window_reverse(attn_windows, self.window_size, self.input_resolution) # B H' W' C
|
|
|
|
|
|
|
|
|
|
|
|
# reverse cyclic shift
|
|
|
|
# reverse cyclic shift
|
|
|
|
if self.shift_size > 0:
|
|
|
|
if has_shift:
|
|
|
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
|
|
|
x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2))
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
x = shifted_x
|
|
|
|
x = shifted_x
|
|
|
|
x = x.view(B, H * W, C)
|
|
|
|
x = x.view(B, H * W, C)
|
|
|
@ -445,7 +451,7 @@ class BasicLayer(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
def forward(self, x):
|
|
|
|
for blk in self.blocks:
|
|
|
|
for blk in self.blocks:
|
|
|
|
if self.grad_checkpointing:
|
|
|
|
if not torch.jit.is_scripting() and self.grad_checkpointing:
|
|
|
|
x = checkpoint.checkpoint(blk, x)
|
|
|
|
x = checkpoint.checkpoint(blk, x)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
x = blk(x)
|
|
|
|
x = blk(x)
|
|
|
|