|
|
|
""" Mixup and Cutmix
|
|
|
|
|
|
|
|
Papers:
|
|
|
|
mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412)
|
|
|
|
|
|
|
|
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899)
|
|
|
|
|
|
|
|
Code Reference:
|
|
|
|
CutMix: https://github.com/clovaai/CutMix-PyTorch
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import math
|
|
|
|
import numbers
|
|
|
|
|
|
|
|
|
|
|
|
def one_hot(x, num_classes, on_value=1., off_value=0., device='cuda'):
|
|
|
|
x = x.long().view(-1, 1)
|
|
|
|
return torch.full((x.size()[0], num_classes), off_value, device=device).scatter_(1, x, on_value)
|
|
|
|
|
|
|
|
|
|
|
|
def mixup_target(target, num_classes, lam=1., smoothing=0.0, device='cuda'):
|
|
|
|
off_value = smoothing / num_classes
|
|
|
|
on_value = 1. - smoothing + off_value
|
|
|
|
y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value, device=device)
|
|
|
|
y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value, device=device)
|
|
|
|
return y1 * lam + y2 * (1. - lam)
|
|
|
|
|
|
|
|
|
|
|
|
def mixup_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False):
|
|
|
|
lam = 1.
|
|
|
|
if not disable:
|
|
|
|
lam = np.random.beta(alpha, alpha)
|
|
|
|
input = input.mul(lam).add_(1 - lam, input.flip(0))
|
|
|
|
target = mixup_target(target, num_classes, lam, smoothing)
|
|
|
|
return input, target
|
|
|
|
|
|
|
|
|
|
|
|
def rand_bbox(size, lam, border=0., count=None):
|
|
|
|
ratio = math.sqrt(1 - lam)
|
|
|
|
img_h, img_w = size[-2:]
|
|
|
|
cut_h, cut_w = int(img_h * ratio), int(img_w * ratio)
|
|
|
|
margin_y, margin_x = int(border * cut_h), int(border * cut_w)
|
|
|
|
cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count)
|
|
|
|
cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count)
|
|
|
|
yl = np.clip(cy - cut_h // 2, 0, img_h)
|
|
|
|
yh = np.clip(cy + cut_h // 2, 0, img_h)
|
|
|
|
xl = np.clip(cx - cut_w // 2, 0, img_w)
|
|
|
|
xh = np.clip(cx + cut_w // 2, 0, img_w)
|
|
|
|
return yl, yh, xl, xh
|
|
|
|
|
|
|
|
|
|
|
|
def rand_bbox_minmax(size, minmax, count=None):
|
|
|
|
assert len(minmax) == 2
|
|
|
|
img_h, img_w = size[-2:]
|
|
|
|
cut_h = np.random.randint(int(img_h * minmax[0]), int(img_h * minmax[1]), size=count)
|
|
|
|
cut_w = np.random.randint(int(img_w * minmax[0]), int(img_w * minmax[1]), size=count)
|
|
|
|
yl = np.random.randint(0, img_h - cut_h, size=count)
|
|
|
|
xl = np.random.randint(0, img_w - cut_w, size=count)
|
|
|
|
yu = yl + cut_h
|
|
|
|
xu = xl + cut_w
|
|
|
|
return yl, yu, xl, xu
|
|
|
|
|
|
|
|
|
|
|
|
def cutmix_bbox_and_lam(img_shape, lam, ratio_minmax=None, correct_lam=True, count=None):
|
|
|
|
if ratio_minmax is not None:
|
|
|
|
yl, yu, xl, xu = rand_bbox_minmax(img_shape, ratio_minmax, count=count)
|
|
|
|
else:
|
|
|
|
yl, yu, xl, xu = rand_bbox(img_shape, lam, count=count)
|
|
|
|
if correct_lam or ratio_minmax is not None:
|
|
|
|
bbox_area = (yu - yl) * (xu - xl)
|
|
|
|
lam = 1. - bbox_area / (img_shape[-2] * img_shape[-1])
|
|
|
|
return (yl, yu, xl, xu), lam
|
|
|
|
|
|
|
|
|
|
|
|
def cutmix_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False, correct_lam=False):
|
|
|
|
lam = 1.
|
|
|
|
if not disable:
|
|
|
|
lam = np.random.beta(alpha, alpha)
|
|
|
|
if lam != 1:
|
|
|
|
yl, yh, xl, xh = rand_bbox(input.size(), lam)
|
|
|
|
input[:, :, yl:yh, xl:xh] = input.flip(0)[:, :, yl:yh, xl:xh]
|
|
|
|
if correct_lam:
|
|
|
|
lam = 1 - (yh - yl) * (xh - xl) / (input.shape[-2] * input.shape[-1])
|
|
|
|
target = mixup_target(target, num_classes, lam, smoothing)
|
|
|
|
return input, target
|
|
|
|
|
|
|
|
|
|
|
|
def mix_batch(
|
|
|
|
input, target, mixup_alpha=0.2, cutmix_alpha=0., prob=1.0, switch_prob=.5,
|
|
|
|
num_classes=1000, smoothing=0.1, disable=False):
|
|
|
|
# FIXME test this version
|
|
|
|
if np.random.rand() > prob:
|
|
|
|
return input, target
|
|
|
|
use_cutmix = cutmix_alpha > 0. and np.random.rand() <= switch_prob
|
|
|
|
if use_cutmix:
|
|
|
|
return cutmix_batch(input, target, cutmix_alpha, num_classes, smoothing, disable)
|
|
|
|
else:
|
|
|
|
return mixup_batch(input, target, mixup_alpha, num_classes, smoothing, disable)
|
|
|
|
|
|
|
|
|
|
|
|
class FastCollateMixup:
|
|
|
|
"""Fast Collate Mixup/Cutmix that applies different params to each element or whole batch
|
|
|
|
|
|
|
|
NOTE once experiments are done, one of the three variants will remain with this class name
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self, mixup_alpha=1., cutmix_alpha=0., cutmix_minmax=None, prob=1.0, switch_prob=0.5,
|
|
|
|
elementwise=False, correct_lam=True, label_smoothing=0.1, num_classes=1000):
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
mixup_alpha (float): mixup alpha value, mixup is active if > 0.
|
|
|
|
cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0.
|
|
|
|
cutmix_minmax (float): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None
|
|
|
|
prob (float): probability of applying mixup or cutmix per batch or element
|
|
|
|
switch_prob (float): probability of using cutmix instead of mixup when both active
|
|
|
|
elementwise (bool): apply mixup/cutmix params per batch element instead of per batch
|
|
|
|
label_smoothing (float):
|
|
|
|
num_classes (int):
|
|
|
|
"""
|
|
|
|
self.mixup_alpha = mixup_alpha
|
|
|
|
self.cutmix_alpha = cutmix_alpha
|
|
|
|
self.cutmix_minmax = cutmix_minmax
|
|
|
|
if self.cutmix_minmax is not None:
|
|
|
|
assert len(self.cutmix_minmax) == 2
|
|
|
|
# force cutmix alpha == 1.0 when minmax active to keep logic simple & safe
|
|
|
|
self.cutmix_alpha = 1.0
|
|
|
|
self.prob = prob
|
|
|
|
self.switch_prob = switch_prob
|
|
|
|
self.label_smoothing = label_smoothing
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.elementwise = elementwise
|
|
|
|
self.correct_lam = correct_lam # correct lambda based on clipped area for cutmix
|
|
|
|
self.mixup_enabled = True # set to false to disable mixing (intended tp be set by train loop)
|
|
|
|
|
|
|
|
def _mix_elem(self, output, batch):
|
|
|
|
batch_size = len(batch)
|
|
|
|
lam_out = np.ones(batch_size)
|
|
|
|
use_cutmix = np.zeros(batch_size).astype(np.bool)
|
|
|
|
if self.mixup_enabled:
|
|
|
|
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
|
|
|
|
use_cutmix = np.random.rand(batch_size) < self.switch_prob
|
|
|
|
lam_mix = np.where(
|
|
|
|
use_cutmix,
|
|
|
|
np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size),
|
|
|
|
np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size))
|
|
|
|
elif self.mixup_alpha > 0.:
|
|
|
|
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size)
|
|
|
|
elif self.cutmix_alpha > 0.:
|
|
|
|
use_cutmix = np.ones(batch_size).astype(np.bool)
|
|
|
|
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size)
|
|
|
|
else:
|
|
|
|
assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true."
|
|
|
|
lam_out = np.where(np.random.rand(batch_size) < self.prob, lam_mix, lam_out)
|
|
|
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
j = batch_size - i - 1
|
|
|
|
lam = lam_out[i]
|
|
|
|
mixed = batch[i][0].astype(np.float32)
|
|
|
|
if lam != 1.:
|
|
|
|
if use_cutmix[i]:
|
|
|
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
|
|
|
|
output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam)
|
|
|
|
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh].astype(np.float32)
|
|
|
|
lam_out[i] = lam
|
|
|
|
else:
|
|
|
|
mixed = mixed * lam + batch[j][0].astype(np.float32) * (1 - lam)
|
|
|
|
lam_out[i] = lam
|
|
|
|
np.round(mixed, out=mixed)
|
|
|
|
output[i] += torch.from_numpy(mixed.astype(np.uint8))
|
|
|
|
return torch.tensor(lam_out).unsqueeze(1)
|
|
|
|
|
|
|
|
def _mix_batch(self, output, batch):
|
|
|
|
batch_size = len(batch)
|
|
|
|
lam = 1.
|
|
|
|
use_cutmix = False
|
|
|
|
if self.mixup_enabled and np.random.rand() < self.prob:
|
|
|
|
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
|
|
|
|
use_cutmix = np.random.rand() < self.switch_prob
|
|
|
|
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) if use_cutmix else \
|
|
|
|
np.random.beta(self.mixup_alpha, self.mixup_alpha)
|
|
|
|
elif self.mixup_alpha > 0.:
|
|
|
|
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha)
|
|
|
|
elif self.cutmix_alpha > 0.:
|
|
|
|
use_cutmix = True
|
|
|
|
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha)
|
|
|
|
else:
|
|
|
|
assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true."
|
|
|
|
lam = lam_mix
|
|
|
|
|
|
|
|
if use_cutmix:
|
|
|
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
|
|
|
|
output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam)
|
|
|
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
j = batch_size - i - 1
|
|
|
|
mixed = batch[i][0].astype(np.float32)
|
|
|
|
if lam != 1.:
|
|
|
|
if use_cutmix:
|
|
|
|
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh].astype(np.float32)
|
|
|
|
else:
|
|
|
|
mixed = mixed * lam + batch[j][0].astype(np.float32) * (1 - lam)
|
|
|
|
np.round(mixed, out=mixed)
|
|
|
|
output[i] += torch.from_numpy(mixed.astype(np.uint8))
|
|
|
|
return lam
|
|
|
|
|
|
|
|
def __call__(self, batch):
|
|
|
|
batch_size = len(batch)
|
|
|
|
assert batch_size % 2 == 0, 'Batch size should be even when using this'
|
|
|
|
output = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
|
|
|
|
if self.elementwise:
|
|
|
|
lam = self._mix_elem(output, batch)
|
|
|
|
else:
|
|
|
|
lam = self._mix_batch(output, batch)
|
|
|
|
target = torch.tensor([b[1] for b in batch], dtype=torch.int64)
|
|
|
|
target = mixup_target(target, self.num_classes, lam, self.label_smoothing, device='cpu')
|
|
|
|
|
|
|
|
return output, target
|
|
|
|
|