Some cutmix/mixup cleanup/fixes

pull/218/head
Ross Wightman 5 years ago
parent b3cb5f3275
commit 670c61b28f

@ -14,6 +14,7 @@ Hacked together by Ross Wightman
import numpy as np
import torch
import math
import numbers
from enum import IntEnum
@ -49,9 +50,17 @@ def mixup_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disab
return input, target
def calc_ratio(lam, minmax=None):
ratio = math.sqrt(1 - lam)
if minmax is not None:
if isinstance(minmax, numbers.Number):
minmax = (minmax, 1 - minmax)
ratio = np.clip(ratio, minmax[0], minmax[1])
return ratio
def rand_bbox(size, ratio):
H, W = size[-2:]
ratio = max(min(ratio, 0.8), 0.2)
cut_h, cut_w = int(H * ratio), int(W * ratio)
cy, cx = np.random.randint(H), np.random.randint(W)
yl, yh = np.clip(cy - cut_h // 2, 0, H), np.clip(cy + cut_h // 2, 0, H)
@ -59,14 +68,15 @@ def rand_bbox(size, ratio):
return yl, yh, xl, xh
def cutmix_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False):
def cutmix_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False, correct_lam=False):
lam = 1.
if not disable:
lam = np.random.beta(alpha, alpha)
if lam != 1:
ratio = math.sqrt(1. - lam)
yl, yh, xl, xh = rand_bbox(input.size(), ratio)
yl, yh, xl, xh = rand_bbox(input.size(), calc_ratio(lam))
input[:, :, yl:yh, xl:xh] = input.flip(0)[:, :, yl:yh, xl:xh]
if correct_lam:
lam = 1 - (yh - yl) * (xh - xl) / (input.shape[-2] * input.shape[-1])
target = mixup_target(target, num_classes, lam, smoothing)
return input, target
@ -82,9 +92,9 @@ def mix_batch(
input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False, mode=MixupMode.MIXUP):
mode = _resolve_mode(mode)
if mode == MixupMode.CUTMIX:
return mixup_batch(input, target, alpha, num_classes, smoothing, disable)
else:
return cutmix_batch(input, target, alpha, num_classes, smoothing, disable)
else:
return mixup_batch(input, target, alpha, num_classes, smoothing, disable)
class FastCollateMixup:
@ -99,6 +109,7 @@ class FastCollateMixup:
self.mode = MixupMode.from_str(mode) if isinstance(mode, str) else mode
self.mixup_enabled = True
self.correct_lam = False # correct lambda based on clipped area for cutmix
self.ratio_minmax = None # (0.2, 0.8)
def _do_mix(self, tensor, batch):
batch_size = len(batch)
@ -111,7 +122,7 @@ class FastCollateMixup:
if _resolve_mode(self.mode) == MixupMode.CUTMIX:
mixed_i, mixed_j = batch[i][0].astype(np.float32), batch[j][0].astype(np.float32)
ratio = math.sqrt(1. - lam)
ratio = calc_ratio(lam, self.ratio_minmax)
if lam != 1:
yl, yh, xl, xh = rand_bbox(tensor.size(), ratio)
mixed_i[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh].astype(np.float32)
@ -132,7 +143,7 @@ class FastCollateMixup:
np.round(mixed_j, out=mixed_j)
tensor[i] += torch.from_numpy(mixed_i.astype(np.uint8))
tensor[j] += torch.from_numpy(mixed_j.astype(np.uint8))
return lam_out
return lam_out.unsqueeze(1)
def __call__(self, batch):
batch_size = len(batch)
@ -140,7 +151,7 @@ class FastCollateMixup:
tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
lam = self._do_mix(tensor, batch)
target = torch.tensor([b[1] for b in batch], dtype=torch.int64)
target = mixup_target(target, self.num_classes, lam.unsqueeze(1), self.label_smoothing, device='cpu')
target = mixup_target(target, self.num_classes, lam, self.label_smoothing, device='cpu')
return tensor, target
@ -157,27 +168,27 @@ class FastCollateMixupElementwise(FastCollateMixup):
batch_size = len(batch)
lam_out = torch.ones(batch_size)
for i in range(batch_size):
j = batch_size - i - 1
lam = 1.
if self.mixup_enabled:
lam = np.random.beta(self.mixup_alpha, self.mixup_alpha)
if _resolve_mode(self.mode) == MixupMode.CUTMIX:
mixed = batch[i][0].astype(np.float32)
ratio = math.sqrt(1. - lam)
if lam != 1:
ratio = calc_ratio(lam)
yl, yh, xl, xh = rand_bbox(tensor.size(), ratio)
mixed[:, yl:yh, xl:xh] = batch[batch_size - i - 1][0][:, yl:yh, xl:xh].astype(np.float32)
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh].astype(np.float32)
if self.correct_lam:
lam_out[i] -= (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1])
else:
lam_out[i] = lam
else:
mixed = batch[i][0].astype(np.float32) * lam + \
batch[batch_size - i - 1][0].astype(np.float32) * (1 - lam)
mixed = batch[i][0].astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam)
lam_out[i] = lam
np.round(mixed, out=mixed)
tensor[i] += torch.from_numpy(mixed.astype(np.uint8))
return lam_out
return lam_out.unsqueeze(1)
class FastCollateMixupBatchwise(FastCollateMixup):
@ -191,25 +202,23 @@ class FastCollateMixupBatchwise(FastCollateMixup):
def _do_mix(self, tensor, batch):
batch_size = len(batch)
lam_out = torch.ones(batch_size)
lam = 1.
cutmix = _resolve_mode(self.mode) == MixupMode.CUTMIX
if self.mixup_enabled:
lam = np.random.beta(self.mixup_alpha, self.mixup_alpha)
if cutmix and self.correct_lam:
ratio = math.sqrt(1. - lam)
yl, yh, xl, xh = rand_bbox(batch[0][0].shape, ratio)
lam = 1 - (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1])
if cutmix:
yl, yh, xl, xh = rand_bbox(batch[0][0].shape, calc_ratio(lam))
if self.correct_lam:
lam = 1 - (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1])
for i in range(batch_size):
j = batch_size - i - 1
if cutmix:
mixed = batch[i][0].astype(np.float32)
if lam != 1:
mixed[:, yl:yh, xl:xh] = batch[batch_size - i - 1][0][:, yl:yh, xl:xh].astype(np.float32)
lam_out[i] -= (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1])
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh].astype(np.float32)
else:
mixed = batch[i][0].astype(np.float32) * lam + \
batch[batch_size - i - 1][0].astype(np.float32) * (1 - lam)
mixed = batch[i][0].astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam)
np.round(mixed, out=mixed)
tensor[i] += torch.from_numpy(mixed.astype(np.uint8))
return lam

Loading…
Cancel
Save