|
|
|
""" EfficientNet, MobileNetV3, etc Blocks
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.nn import functional as F
|
|
|
|
|
|
|
|
from .layers import create_conv2d, drop_path, make_divisible, create_act_layer
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
4 years ago
|
|
|
from .layers.activations import sigmoid
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv', 'InvertedResidual', 'CondConvResidual', 'EdgeResidual']
|
|
|
|
|
|
|
|
|
|
|
|
class SqueezeExcite(nn.Module):
|
|
|
|
""" Squeeze-and-Excitation w/ specific features for EfficientNet/MobileNet family
|
|
|
|
|
|
|
|
Args:
|
|
|
|
in_chs (int): input channels to layer
|
|
|
|
rd_ratio (float): ratio of squeeze reduction
|
|
|
|
act_layer (nn.Module): activation layer of containing block
|
|
|
|
gate_layer (Callable): attention gate function
|
|
|
|
force_act_layer (nn.Module): override block's activation fn if this is set/bound
|
|
|
|
rd_round_fn (Callable): specify a fn to calculate rounding of reduced chs
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, in_chs, rd_ratio=0.25, rd_channels=None, act_layer=nn.ReLU,
|
|
|
|
gate_layer=nn.Sigmoid, force_act_layer=None, rd_round_fn=None):
|
|
|
|
super(SqueezeExcite, self).__init__()
|
|
|
|
if rd_channels is None:
|
|
|
|
rd_round_fn = rd_round_fn or round
|
|
|
|
rd_channels = rd_round_fn(in_chs * rd_ratio)
|
|
|
|
act_layer = force_act_layer or act_layer
|
|
|
|
self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1, bias=True)
|
|
|
|
self.act1 = create_act_layer(act_layer, inplace=True)
|
|
|
|
self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1, bias=True)
|
|
|
|
self.gate = create_act_layer(gate_layer)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x_se = x.mean((2, 3), keepdim=True)
|
|
|
|
x_se = self.conv_reduce(x_se)
|
|
|
|
x_se = self.act1(x_se)
|
|
|
|
x_se = self.conv_expand(x_se)
|
|
|
|
return x * self.gate(x_se)
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBnAct(nn.Module):
|
|
|
|
""" Conv + Norm Layer + Activation w/ optional skip connection
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
|
|
self, in_chs, out_chs, kernel_size, stride=1, dilation=1, pad_type='',
|
|
|
|
skip=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_path_rate=0.):
|
|
|
|
super(ConvBnAct, self).__init__()
|
|
|
|
self.has_residual = skip and stride == 1 and in_chs == out_chs
|
|
|
|
self.drop_path_rate = drop_path_rate
|
|
|
|
self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, padding=pad_type)
|
|
|
|
self.bn1 = norm_layer(out_chs)
|
|
|
|
self.act1 = act_layer(inplace=True)
|
|
|
|
|
|
|
|
def feature_info(self, location):
|
|
|
|
if location == 'expansion': # output of conv after act, same as block coutput
|
|
|
|
info = dict(module='act1', hook_type='forward', num_chs=self.conv.out_channels)
|
|
|
|
else: # location == 'bottleneck', block output
|
|
|
|
info = dict(module='', hook_type='', num_chs=self.conv.out_channels)
|
|
|
|
return info
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = x
|
|
|
|
x = self.conv(x)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.act1(x)
|
|
|
|
if self.has_residual:
|
|
|
|
if self.drop_path_rate > 0.:
|
|
|
|
x = drop_path(x, self.drop_path_rate, self.training)
|
|
|
|
x += shortcut
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class DepthwiseSeparableConv(nn.Module):
|
|
|
|
""" DepthwiseSeparable block
|
|
|
|
Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion
|
|
|
|
(factor of 1.0). This is an alternative to having a IR with an optional first pw conv.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
|
|
self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='',
|
|
|
|
noskip=False, pw_kernel_size=1, pw_act=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
|
|
|
|
se_layer=None, drop_path_rate=0.):
|
|
|
|
super(DepthwiseSeparableConv, self).__init__()
|
|
|
|
self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip
|
|
|
|
self.has_pw_act = pw_act # activation after point-wise conv
|
|
|
|
self.drop_path_rate = drop_path_rate
|
|
|
|
|
|
|
|
self.conv_dw = create_conv2d(
|
|
|
|
in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True)
|
|
|
|
self.bn1 = norm_layer(in_chs)
|
|
|
|
self.act1 = act_layer(inplace=True)
|
|
|
|
|
|
|
|
# Squeeze-and-excitation
|
|
|
|
self.se = se_layer(in_chs, act_layer=act_layer) if se_layer else nn.Identity()
|
|
|
|
|
|
|
|
self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type)
|
|
|
|
self.bn2 = norm_layer(out_chs)
|
|
|
|
self.act2 = act_layer(inplace=True) if self.has_pw_act else nn.Identity()
|
|
|
|
|
|
|
|
def feature_info(self, location):
|
|
|
|
if location == 'expansion': # after SE, input to PW
|
|
|
|
info = dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels)
|
|
|
|
else: # location == 'bottleneck', block output
|
|
|
|
info = dict(module='', hook_type='', num_chs=self.conv_pw.out_channels)
|
|
|
|
return info
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = x
|
|
|
|
|
|
|
|
x = self.conv_dw(x)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.act1(x)
|
|
|
|
|
|
|
|
x = self.se(x)
|
|
|
|
|
|
|
|
x = self.conv_pw(x)
|
|
|
|
x = self.bn2(x)
|
|
|
|
x = self.act2(x)
|
|
|
|
|
|
|
|
if self.has_residual:
|
|
|
|
if self.drop_path_rate > 0.:
|
|
|
|
x = drop_path(x, self.drop_path_rate, self.training)
|
|
|
|
x += shortcut
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class InvertedResidual(nn.Module):
|
|
|
|
""" Inverted residual block w/ optional SE
|
|
|
|
|
|
|
|
Originally used in MobileNet-V2 - https://arxiv.org/abs/1801.04381v4, this layer is often
|
|
|
|
referred to as 'MBConv' for (Mobile inverted bottleneck conv) and is also used in
|
|
|
|
* MNasNet - https://arxiv.org/abs/1807.11626
|
|
|
|
* EfficientNet - https://arxiv.org/abs/1905.11946
|
|
|
|
* MobileNet-V3 - https://arxiv.org/abs/1905.02244
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='',
|
|
|
|
noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, act_layer=nn.ReLU,
|
|
|
|
norm_layer=nn.BatchNorm2d, se_layer=None, conv_kwargs=None, drop_path_rate=0.):
|
|
|
|
super(InvertedResidual, self).__init__()
|
|
|
|
conv_kwargs = conv_kwargs or {}
|
|
|
|
mid_chs = make_divisible(in_chs * exp_ratio)
|
|
|
|
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
|
|
|
|
self.drop_path_rate = drop_path_rate
|
|
|
|
|
|
|
|
# Point-wise expansion
|
|
|
|
self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs)
|
|
|
|
self.bn1 = norm_layer(mid_chs)
|
|
|
|
self.act1 = act_layer(inplace=True)
|
|
|
|
|
|
|
|
# Depth-wise convolution
|
|
|
|
self.conv_dw = create_conv2d(
|
|
|
|
mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation,
|
|
|
|
padding=pad_type, depthwise=True, **conv_kwargs)
|
|
|
|
self.bn2 = norm_layer(mid_chs)
|
|
|
|
self.act2 = act_layer(inplace=True)
|
|
|
|
|
|
|
|
# Squeeze-and-excitation
|
|
|
|
self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity()
|
|
|
|
|
|
|
|
# Point-wise linear projection
|
|
|
|
self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs)
|
|
|
|
self.bn3 = norm_layer(out_chs)
|
|
|
|
|
|
|
|
def feature_info(self, location):
|
|
|
|
if location == 'expansion': # after SE, input to PWL
|
|
|
|
info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels)
|
|
|
|
else: # location == 'bottleneck', block output
|
|
|
|
info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels)
|
|
|
|
return info
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = x
|
|
|
|
|
|
|
|
# Point-wise expansion
|
|
|
|
x = self.conv_pw(x)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.act1(x)
|
|
|
|
|
|
|
|
# Depth-wise convolution
|
|
|
|
x = self.conv_dw(x)
|
|
|
|
x = self.bn2(x)
|
|
|
|
x = self.act2(x)
|
|
|
|
|
|
|
|
# Squeeze-and-excitation
|
|
|
|
x = self.se(x)
|
|
|
|
|
|
|
|
# Point-wise linear projection
|
|
|
|
x = self.conv_pwl(x)
|
|
|
|
x = self.bn3(x)
|
|
|
|
|
|
|
|
if self.has_residual:
|
|
|
|
if self.drop_path_rate > 0.:
|
|
|
|
x = drop_path(x, self.drop_path_rate, self.training)
|
|
|
|
x += shortcut
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class CondConvResidual(InvertedResidual):
|
|
|
|
""" Inverted residual block w/ CondConv routing"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='',
|
|
|
|
noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, act_layer=nn.ReLU,
|
|
|
|
norm_layer=nn.BatchNorm2d, se_layer=None, num_experts=0, drop_path_rate=0.):
|
|
|
|
|
|
|
|
self.num_experts = num_experts
|
|
|
|
conv_kwargs = dict(num_experts=self.num_experts)
|
|
|
|
|
|
|
|
super(CondConvResidual, self).__init__(
|
|
|
|
in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, pad_type=pad_type,
|
|
|
|
act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size,
|
|
|
|
pw_kernel_size=pw_kernel_size, se_layer=se_layer, norm_layer=norm_layer, conv_kwargs=conv_kwargs,
|
|
|
|
drop_path_rate=drop_path_rate)
|
|
|
|
|
|
|
|
self.routing_fn = nn.Linear(in_chs, self.num_experts)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = x
|
|
|
|
|
|
|
|
# CondConv routing
|
|
|
|
pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1)
|
|
|
|
routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs))
|
|
|
|
|
|
|
|
# Point-wise expansion
|
|
|
|
x = self.conv_pw(x, routing_weights)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.act1(x)
|
|
|
|
|
|
|
|
# Depth-wise convolution
|
|
|
|
x = self.conv_dw(x, routing_weights)
|
|
|
|
x = self.bn2(x)
|
|
|
|
x = self.act2(x)
|
|
|
|
|
|
|
|
# Squeeze-and-excitation
|
|
|
|
x = self.se(x)
|
|
|
|
|
|
|
|
# Point-wise linear projection
|
|
|
|
x = self.conv_pwl(x, routing_weights)
|
|
|
|
x = self.bn3(x)
|
|
|
|
|
|
|
|
if self.has_residual:
|
|
|
|
if self.drop_path_rate > 0.:
|
|
|
|
x = drop_path(x, self.drop_path_rate, self.training)
|
|
|
|
x += shortcut
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class EdgeResidual(nn.Module):
|
|
|
|
""" Residual block with expansion convolution followed by pointwise-linear w/ stride
|
|
|
|
|
|
|
|
Originally introduced in `EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML`
|
|
|
|
- https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
|
|
|
|
|
|
|
|
This layer is also called FusedMBConv in the MobileDet, EfficientNet-X, and EfficientNet-V2 papers
|
|
|
|
* MobileDet - https://arxiv.org/abs/2004.14525
|
|
|
|
* EfficientNet-X - https://arxiv.org/abs/2102.05610
|
|
|
|
* EfficientNet-V2 - https://arxiv.org/abs/2104.00298
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, in_chs, out_chs, exp_kernel_size=3, stride=1, dilation=1, pad_type='',
|
|
|
|
force_in_chs=0, noskip=False, exp_ratio=1.0, pw_kernel_size=1, act_layer=nn.ReLU,
|
|
|
|
norm_layer=nn.BatchNorm2d, se_layer=None, drop_path_rate=0.):
|
|
|
|
super(EdgeResidual, self).__init__()
|
|
|
|
if force_in_chs > 0:
|
|
|
|
mid_chs = make_divisible(force_in_chs * exp_ratio)
|
|
|
|
else:
|
|
|
|
mid_chs = make_divisible(in_chs * exp_ratio)
|
|
|
|
has_se = se_layer is not None and se_ratio > 0.
|
|
|
|
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
|
|
|
|
self.drop_path_rate = drop_path_rate
|
|
|
|
|
|
|
|
# Expansion convolution
|
|
|
|
self.conv_exp = create_conv2d(
|
|
|
|
in_chs, mid_chs, exp_kernel_size, stride=stride, dilation=dilation, padding=pad_type)
|
|
|
|
self.bn1 = norm_layer(mid_chs)
|
|
|
|
self.act1 = act_layer(inplace=True)
|
|
|
|
|
|
|
|
# Squeeze-and-excitation
|
|
|
|
self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity()
|
|
|
|
|
|
|
|
# Point-wise linear projection
|
|
|
|
self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type)
|
|
|
|
self.bn2 = norm_layer(out_chs)
|
|
|
|
|
|
|
|
def feature_info(self, location):
|
|
|
|
if location == 'expansion': # after SE, before PWL
|
|
|
|
info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels)
|
|
|
|
else: # location == 'bottleneck', block output
|
|
|
|
info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels)
|
|
|
|
return info
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = x
|
|
|
|
|
|
|
|
# Expansion convolution
|
|
|
|
x = self.conv_exp(x)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.act1(x)
|
|
|
|
|
|
|
|
# Squeeze-and-excitation
|
|
|
|
x = self.se(x)
|
|
|
|
|
|
|
|
# Point-wise linear projection
|
|
|
|
x = self.conv_pwl(x)
|
|
|
|
x = self.bn2(x)
|
|
|
|
|
|
|
|
if self.has_residual:
|
|
|
|
if self.drop_path_rate > 0.:
|
|
|
|
x = drop_path(x, self.drop_path_rate, self.training)
|
|
|
|
x += shortcut
|
|
|
|
|
|
|
|
return x
|