pull/123/head
parent
e01ccb88ce
commit
1a8f5900ab
@ -1,31 +0,0 @@
|
||||
""" AvgPool2d w/ Same Padding
|
||||
|
||||
Hacked together by Ross Wightman
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from typing import List
|
||||
import math
|
||||
|
||||
from .helpers import tup_pair
|
||||
from .padding import pad_same
|
||||
|
||||
|
||||
def avg_pool2d_same(x, kernel_size: List[int], stride: List[int], padding: List[int] = (0, 0),
|
||||
ceil_mode: bool = False, count_include_pad: bool = True):
|
||||
x = pad_same(x, kernel_size, stride)
|
||||
return F.avg_pool2d(x, kernel_size, stride, (0, 0), ceil_mode, count_include_pad)
|
||||
|
||||
|
||||
class AvgPool2dSame(nn.AvgPool2d):
|
||||
""" Tensorflow like 'SAME' wrapper for 2D average pooling
|
||||
"""
|
||||
def __init__(self, kernel_size: int, stride=None, padding=0, ceil_mode=False, count_include_pad=True):
|
||||
kernel_size = tup_pair(kernel_size)
|
||||
stride = tup_pair(stride)
|
||||
super(AvgPool2dSame, self).__init__(kernel_size, stride, (0, 0), ceil_mode, count_include_pad)
|
||||
|
||||
def forward(self, x):
|
||||
return avg_pool2d_same(
|
||||
x, self.kernel_size, self.stride, self.padding, self.ceil_mode, self.count_include_pad)
|
@ -0,0 +1,71 @@
|
||||
""" AvgPool2d w/ Same Padding
|
||||
|
||||
Hacked together by Ross Wightman
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from typing import Union, List, Tuple, Optional
|
||||
import math
|
||||
|
||||
from .helpers import tup_pair
|
||||
from .padding import pad_same, get_padding_value
|
||||
|
||||
|
||||
def avg_pool2d_same(x, kernel_size: List[int], stride: List[int], padding: List[int] = (0, 0),
|
||||
ceil_mode: bool = False, count_include_pad: bool = True):
|
||||
# FIXME how to deal with count_include_pad vs not for external padding?
|
||||
x = pad_same(x, kernel_size, stride)
|
||||
return F.avg_pool2d(x, kernel_size, stride, (0, 0), ceil_mode, count_include_pad)
|
||||
|
||||
|
||||
class AvgPool2dSame(nn.AvgPool2d):
|
||||
""" Tensorflow like 'SAME' wrapper for 2D average pooling
|
||||
"""
|
||||
def __init__(self, kernel_size: int, stride=None, padding=0, ceil_mode=False, count_include_pad=True):
|
||||
kernel_size = tup_pair(kernel_size)
|
||||
stride = tup_pair(stride)
|
||||
super(AvgPool2dSame, self).__init__(kernel_size, stride, (0, 0), ceil_mode, count_include_pad)
|
||||
|
||||
def forward(self, x):
|
||||
return avg_pool2d_same(
|
||||
x, self.kernel_size, self.stride, self.padding, self.ceil_mode, self.count_include_pad)
|
||||
|
||||
|
||||
def max_pool2d_same(
|
||||
x, kernel_size: List[int], stride: List[int], padding: List[int] = (0, 0),
|
||||
dilation: List[int] = (1, 1), ceil_mode: bool = False):
|
||||
x = pad_same(x, kernel_size, stride, value=-float('inf'))
|
||||
return F.max_pool2d(x, kernel_size, stride, (0, 0), dilation, ceil_mode)
|
||||
|
||||
|
||||
class MaxPool2dSame(nn.MaxPool2d):
|
||||
""" Tensorflow like 'SAME' wrapper for 2D max pooling
|
||||
"""
|
||||
def __init__(self, kernel_size: int, stride=None, padding=0, dilation=1, ceil_mode=False, count_include_pad=True):
|
||||
kernel_size = tup_pair(kernel_size)
|
||||
stride = tup_pair(stride)
|
||||
super(MaxPool2dSame, self).__init__(kernel_size, stride, (0, 0), dilation, ceil_mode, count_include_pad)
|
||||
|
||||
def forward(self, x):
|
||||
return max_pool2d_same(x, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode)
|
||||
|
||||
|
||||
def create_pool2d(pool_type, kernel_size, stride=None, **kwargs):
|
||||
stride = stride or kernel_size
|
||||
padding = kwargs.pop('padding', '')
|
||||
padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, **kwargs)
|
||||
if is_dynamic:
|
||||
if pool_type == 'avg':
|
||||
return AvgPool2dSame(kernel_size, stride=stride, **kwargs)
|
||||
elif pool_type == 'max':
|
||||
return MaxPool2dSame(kernel_size, stride=stride, **kwargs)
|
||||
else:
|
||||
assert False, f'Unsupported pool type {pool_type}'
|
||||
else:
|
||||
if pool_type == 'avg':
|
||||
return nn.AvgPool2d(kernel_size, stride=stride, padding=padding, **kwargs)
|
||||
elif pool_type == 'max':
|
||||
return nn.MaxPool2d(kernel_size, stride=stride, padding=padding, **kwargs)
|
||||
else:
|
||||
assert False, f'Unsupported pool type {pool_type}'
|
Loading…
Reference in new issue