|
|
|
#!/usr/bin/env python3
|
|
|
|
""" ImageNet Training Script
|
|
|
|
|
|
|
|
This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet
|
|
|
|
training results with some of the latest networks and training techniques. It favours canonical PyTorch
|
|
|
|
and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed
|
|
|
|
and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit.
|
|
|
|
|
|
|
|
This script was started from an early version of the PyTorch ImageNet example
|
|
|
|
(https://github.com/pytorch/examples/tree/master/imagenet)
|
|
|
|
|
|
|
|
NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples
|
|
|
|
(https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
|
|
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import time
|
|
|
|
import yaml
|
|
|
|
import os
|
|
|
|
import logging
|
|
|
|
from collections import OrderedDict
|
|
|
|
from contextlib import suppress
|
|
|
|
from datetime import datetime
|
|
|
|
|
|
|
|
import wandb
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torchvision.utils
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as NativeDDP
|
|
|
|
|
|
|
|
from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset
|
|
|
|
from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint,\
|
|
|
|
convert_splitbn_model, model_parameters
|
|
|
|
from timm.utils import *
|
|
|
|
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy, JsdCrossEntropy
|
|
|
|
from timm.optim import create_optimizer_v2, optimizer_kwargs
|
|
|
|
from timm.scheduler import create_scheduler
|
|
|
|
from timm.utils import ApexScaler, NativeScaler
|
|
|
|
|
|
|
|
try:
|
|
|
|
from apex import amp
|
|
|
|
from apex.parallel import DistributedDataParallel as ApexDDP
|
|
|
|
from apex.parallel import convert_syncbn_model
|
|
|
|
has_apex = True
|
|
|
|
except ImportError:
|
|
|
|
has_apex = False
|
|
|
|
|
|
|
|
has_native_amp = False
|
|
|
|
try:
|
|
|
|
if getattr(torch.cuda.amp, 'autocast') is not None:
|
|
|
|
has_native_amp = True
|
|
|
|
except AttributeError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
_logger = logging.getLogger('train')
|
|
|
|
|
|
|
|
# The first arg parser parses out only the --config argument, this argument is used to
|
|
|
|
# load a yaml file containing key-values that override the defaults for the main parser below
|
|
|
|
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
|
|
|
|
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
|
|
|
|
help='YAML config file specifying default arguments')
|
|
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
|
|
|
|
|
|
|
|
# Dataset / Model parameters
|
|
|
|
parser.add_argument('data_dir', metavar='DIR',
|
|
|
|
help='path to dataset')
|
|
|
|
parser.add_argument('--dataset', '-d', metavar='NAME', default='',
|
|
|
|
help='dataset type (default: ImageFolder/ImageTar if empty)')
|
|
|
|
parser.add_argument('--train-split', metavar='NAME', default='train',
|
|
|
|
help='dataset train split (default: train)')
|
|
|
|
parser.add_argument('--val-split', metavar='NAME', default='validation',
|
|
|
|
help='dataset validation split (default: validation)')
|
|
|
|
parser.add_argument('--model', default='resnet101', type=str, metavar='MODEL',
|
|
|
|
help='Name of model to train (default: "countception"')
|
|
|
|
parser.add_argument('--pretrained', action='store_true', default=False,
|
|
|
|
help='Start with pretrained version of specified network (if avail)')
|
|
|
|
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
|
|
|
|
help='Initialize model from this checkpoint (default: none)')
|
|
|
|
parser.add_argument('--resume', default='', type=str, metavar='PATH',
|
|
|
|
help='Resume full model and optimizer state from checkpoint (default: none)')
|
|
|
|
parser.add_argument('--no-resume-opt', action='store_true', default=False,
|
|
|
|
help='prevent resume of optimizer state when resuming model')
|
|
|
|
parser.add_argument('--num-classes', type=int, default=None, metavar='N',
|
|
|
|
help='number of label classes (Model default if None)')
|
|
|
|
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
|
|
|
|
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
|
|
|
|
parser.add_argument('--img-size', type=int, default=None, metavar='N',
|
|
|
|
help='Image patch size (default: None => model default)')
|
|
|
|
parser.add_argument('--input-size', default=None, nargs=3, type=int,
|
|
|
|
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
|
|
|
|
parser.add_argument('--crop-pct', default=None, type=float,
|
|
|
|
metavar='N', help='Input image center crop percent (for validation only)')
|
|
|
|
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
|
|
|
|
help='Override mean pixel value of dataset')
|
|
|
|
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
|
|
|
|
help='Override std deviation of of dataset')
|
|
|
|
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
|
|
|
|
help='Image resize interpolation type (overrides model)')
|
|
|
|
parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
|
|
|
|
help='input batch size for training (default: 32)')
|
|
|
|
parser.add_argument('-vb', '--validation-batch-size-multiplier', type=int, default=1, metavar='N',
|
|
|
|
help='ratio of validation batch size to training batch size (default: 1)')
|
|
|
|
|
|
|
|
# Optimizer parameters
|
|
|
|
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
|
|
|
|
help='Optimizer (default: "sgd"')
|
|
|
|
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
|
|
|
|
help='Optimizer Epsilon (default: None, use opt default)')
|
|
|
|
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
|
|
|
|
help='Optimizer Betas (default: None, use opt default)')
|
|
|
|
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
|
|
|
|
help='Optimizer momentum (default: 0.9)')
|
|
|
|
parser.add_argument('--weight-decay', type=float, default=0.0001,
|
|
|
|
help='weight decay (default: 0.0001)')
|
|
|
|
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
|
|
|
|
help='Clip gradient norm (default: None, no clipping)')
|
|
|
|
parser.add_argument('--clip-mode', type=str, default='norm',
|
|
|
|
help='Gradient clipping mode. One of ("norm", "value", "agc")')
|
|
|
|
|
|
|
|
|
|
|
|
# Learning rate schedule parameters
|
|
|
|
parser.add_argument('--sched', default='step', type=str, metavar='SCHEDULER',
|
|
|
|
help='LR scheduler (default: "step"')
|
|
|
|
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
|
|
|
help='learning rate (default: 0.01)')
|
|
|
|
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
|
|
|
|
help='learning rate noise on/off epoch percentages')
|
|
|
|
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
|
|
|
|
help='learning rate noise limit percent (default: 0.67)')
|
|
|
|
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
|
|
|
|
help='learning rate noise std-dev (default: 1.0)')
|
|
|
|
parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
|
|
|
|
help='learning rate cycle len multiplier (default: 1.0)')
|
|
|
|
parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
|
|
|
|
help='learning rate cycle limit')
|
|
|
|
parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
|
|
|
|
help='warmup learning rate (default: 0.0001)')
|
|
|
|
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
|
|
|
|
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
|
|
|
|
parser.add_argument('--epochs', type=int, default=200, metavar='N',
|
|
|
|
help='number of epochs to train (default: 2)')
|
|
|
|
parser.add_argument('--epoch-repeats', type=float, default=0., metavar='N',
|
|
|
|
help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).')
|
|
|
|
parser.add_argument('--start-epoch', default=None, type=int, metavar='N',
|
|
|
|
help='manual epoch number (useful on restarts)')
|
|
|
|
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
|
|
|
|
help='epoch interval to decay LR')
|
|
|
|
parser.add_argument('--warmup-epochs', type=int, default=3, metavar='N',
|
|
|
|
help='epochs to warmup LR, if scheduler supports')
|
|
|
|
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
|
|
|
|
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
|
|
|
|
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
|
|
|
|
help='patience epochs for Plateau LR scheduler (default: 10')
|
|
|
|
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
|
|
|
|
help='LR decay rate (default: 0.1)')
|
|
|
|
|
|
|
|
# Augmentation & regularization parameters
|
|
|
|
parser.add_argument('--no-aug', action='store_true', default=False,
|
|
|
|
help='Disable all training augmentation, override other train aug args')
|
|
|
|
parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
|
|
|
|
help='Random resize scale (default: 0.08 1.0)')
|
|
|
|
parser.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO',
|
|
|
|
help='Random resize aspect ratio (default: 0.75 1.33)')
|
|
|
|
parser.add_argument('--hflip', type=float, default=0.5,
|
|
|
|
help='Horizontal flip training aug probability')
|
|
|
|
parser.add_argument('--vflip', type=float, default=0.,
|
|
|
|
help='Vertical flip training aug probability')
|
|
|
|
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
|
|
|
|
help='Color jitter factor (default: 0.4)')
|
|
|
|
parser.add_argument('--aa', type=str, default=None, metavar='NAME',
|
|
|
|
help='Use AutoAugment policy. "v0" or "original". (default: None)'),
|
|
|
|
parser.add_argument('--aug-splits', type=int, default=0,
|
|
|
|
help='Number of augmentation splits (default: 0, valid: 0 or >=2)')
|
|
|
|
parser.add_argument('--jsd', action='store_true', default=False,
|
|
|
|
help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.')
|
|
|
|
parser.add_argument('--reprob', type=float, default=0., metavar='PCT',
|
|
|
|
help='Random erase prob (default: 0.)')
|
|
|
|
parser.add_argument('--remode', type=str, default='const',
|
|
|
|
help='Random erase mode (default: "const")')
|
|
|
|
parser.add_argument('--recount', type=int, default=1,
|
|
|
|
help='Random erase count (default: 1)')
|
|
|
|
parser.add_argument('--resplit', action='store_true', default=False,
|
|
|
|
help='Do not random erase first (clean) augmentation split')
|
|
|
|
parser.add_argument('--mixup', type=float, default=0.0,
|
|
|
|
help='mixup alpha, mixup enabled if > 0. (default: 0.)')
|
|
|
|
parser.add_argument('--cutmix', type=float, default=0.0,
|
|
|
|
help='cutmix alpha, cutmix enabled if > 0. (default: 0.)')
|
|
|
|
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
|
|
|
|
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
|
|
|
|
parser.add_argument('--mixup-prob', type=float, default=1.0,
|
|
|
|
help='Probability of performing mixup or cutmix when either/both is enabled')
|
|
|
|
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
|
|
|
|
help='Probability of switching to cutmix when both mixup and cutmix enabled')
|
|
|
|
parser.add_argument('--mixup-mode', type=str, default='batch',
|
|
|
|
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
|
|
|
|
parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
|
|
|
|
help='Turn off mixup after this epoch, disabled if 0 (default: 0)')
|
|
|
|
parser.add_argument('--smoothing', type=float, default=0.1,
|
|
|
|
help='Label smoothing (default: 0.1)')
|
|
|
|
parser.add_argument('--train-interpolation', type=str, default='random',
|
|
|
|
help='Training interpolation (random, bilinear, bicubic default: "random")')
|
|
|
|
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
|
|
|
|
help='Dropout rate (default: 0.)')
|
|
|
|
parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
|
|
|
|
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
|
|
|
|
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
|
|
|
|
help='Drop path rate (default: None)')
|
|
|
|
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
|
|
|
|
help='Drop block rate (default: None)')
|
|
|
|
|
|
|
|
# Batch norm parameters (only works with gen_efficientnet based models currently)
|
|
|
|
parser.add_argument('--bn-tf', action='store_true', default=False,
|
|
|
|
help='Use Tensorflow BatchNorm defaults for models that support it (default: False)')
|
|
|
|
parser.add_argument('--bn-momentum', type=float, default=None,
|
|
|
|
help='BatchNorm momentum override (if not None)')
|
|
|
|
parser.add_argument('--bn-eps', type=float, default=None,
|
|
|
|
help='BatchNorm epsilon override (if not None)')
|
|
|
|
parser.add_argument('--sync-bn', action='store_true',
|
|
|
|
help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
|
|
|
|
parser.add_argument('--dist-bn', type=str, default='',
|
|
|
|
help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
|
|
|
|
parser.add_argument('--split-bn', action='store_true',
|
|
|
|
help='Enable separate BN layers per augmentation split.')
|
|
|
|
|
|
|
|
# Model Exponential Moving Average
|
|
|
|
parser.add_argument('--model-ema', action='store_true', default=False,
|
|
|
|
help='Enable tracking moving average of model weights')
|
|
|
|
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False,
|
|
|
|
help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.')
|
|
|
|
parser.add_argument('--model-ema-decay', type=float, default=0.9998,
|
|
|
|
help='decay factor for model weights moving average (default: 0.9998)')
|
|
|
|
|
|
|
|
# Misc
|
|
|
|
parser.add_argument('--seed', type=int, default=42, metavar='S',
|
|
|
|
help='random seed (default: 42)')
|
|
|
|
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
|
|
|
|
help='how many batches to wait before logging training status')
|
|
|
|
parser.add_argument('--recovery-interval', type=int, default=0, metavar='N',
|
|
|
|
help='how many batches to wait before writing recovery checkpoint')
|
|
|
|
parser.add_argument('--checkpoint-hist', type=int, default=10, metavar='N',
|
|
|
|
help='number of checkpoints to keep (default: 10)')
|
|
|
|
parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
|
|
|
|
help='how many training processes to use (default: 1)')
|
|
|
|
parser.add_argument('--save-images', action='store_true', default=False,
|
|
|
|
help='save images of input bathes every log interval for debugging')
|
|
|
|
parser.add_argument('--amp', action='store_true', default=False,
|
|
|
|
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
|
|
|
|
parser.add_argument('--apex-amp', action='store_true', default=False,
|
|
|
|
help='Use NVIDIA Apex AMP mixed precision')
|
|
|
|
parser.add_argument('--native-amp', action='store_true', default=False,
|
|
|
|
help='Use Native Torch AMP mixed precision')
|
|
|
|
parser.add_argument('--channels-last', action='store_true', default=False,
|
|
|
|
help='Use channels_last memory layout')
|
|
|
|
parser.add_argument('--pin-mem', action='store_true', default=False,
|
|
|
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
|
|
|
|
parser.add_argument('--no-prefetcher', action='store_true', default=False,
|
|
|
|
help='disable fast prefetcher')
|
|
|
|
parser.add_argument('--output', default='', type=str, metavar='PATH',
|
|
|
|
help='path to output folder (default: none, current dir)')
|
|
|
|
parser.add_argument('--experiment', default='', type=str, metavar='NAME',
|
|
|
|
help='name of train experiment, name of sub-folder for output')
|
|
|
|
parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC',
|
|
|
|
help='Best metric (default: "top1"')
|
|
|
|
parser.add_argument('--tta', type=int, default=0, metavar='N',
|
|
|
|
help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
|
|
|
|
parser.add_argument("--local_rank", default=0, type=int)
|
|
|
|
parser.add_argument('--use-multi-epochs-loader', action='store_true', default=False,
|
|
|
|
help='use the multi-epochs-loader to save time at the beginning of every epoch')
|
|
|
|
parser.add_argument('--torchscript', dest='torchscript', action='store_true',
|
|
|
|
help='convert model torchscript for inference')
|
|
|
|
parser.add_argument('--use-wandb', action='store_true', default=False,
|
|
|
|
help='use wandb for training and validation logs')
|
|
|
|
parser.add_argument('--wandb-project-name', type=str, default=None,
|
|
|
|
help='wandb project name to be used')
|
|
|
|
|
|
|
|
|
|
|
|
def _parse_args():
|
|
|
|
# Do we have a config file to parse?
|
|
|
|
args_config, remaining = config_parser.parse_known_args()
|
|
|
|
if args_config.config:
|
|
|
|
with open(args_config.config, 'r') as f:
|
|
|
|
cfg = yaml.safe_load(f)
|
|
|
|
parser.set_defaults(**cfg)
|
|
|
|
|
|
|
|
# The main arg parser parses the rest of the args, the usual
|
|
|
|
# defaults will have been overridden if config file specified.
|
|
|
|
args = parser.parse_args(remaining)
|
|
|
|
|
|
|
|
# Cache the args as a text string to save them in the output dir later
|
|
|
|
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
|
|
|
|
return args, args_text
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
setup_default_logging()
|
|
|
|
args, args_text = _parse_args()
|
|
|
|
|
|
|
|
if args.use_wandb:
|
|
|
|
if not args.wandb_project_name:
|
|
|
|
args.wandb_project_name = args.model
|
|
|
|
_logger.warning(f"Wandb project name not provided, defaulting to {args.model}")
|
|
|
|
wandb.init(project=args.wandb_project_name, config=args)
|
|
|
|
|
|
|
|
args.prefetcher = not args.no_prefetcher
|
|
|
|
args.distributed = False
|
|
|
|
if 'WORLD_SIZE' in os.environ:
|
|
|
|
args.distributed = int(os.environ['WORLD_SIZE']) > 1
|
|
|
|
args.device = 'cuda:0'
|
|
|
|
args.world_size = 1
|
|
|
|
args.rank = 0 # global rank
|
|
|
|
if args.distributed:
|
|
|
|
args.device = 'cuda:%d' % args.local_rank
|
|
|
|
torch.cuda.set_device(args.local_rank)
|
|
|
|
torch.distributed.init_process_group(backend='nccl', init_method='env://')
|
|
|
|
args.world_size = torch.distributed.get_world_size()
|
|
|
|
args.rank = torch.distributed.get_rank()
|
|
|
|
_logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
|
|
|
|
% (args.rank, args.world_size))
|
|
|
|
else:
|
|
|
|
_logger.info('Training with a single process on 1 GPUs.')
|
|
|
|
assert args.rank >= 0
|
|
|
|
|
|
|
|
# resolve AMP arguments based on PyTorch / Apex availability
|
|
|
|
use_amp = None
|
|
|
|
if args.amp:
|
|
|
|
# `--amp` chooses native amp before apex (APEX ver not actively maintained)
|
|
|
|
if has_native_amp:
|
|
|
|
args.native_amp = True
|
|
|
|
elif has_apex:
|
|
|
|
args.apex_amp = True
|
|
|
|
if args.apex_amp and has_apex:
|
|
|
|
use_amp = 'apex'
|
|
|
|
elif args.native_amp and has_native_amp:
|
|
|
|
use_amp = 'native'
|
|
|
|
elif args.apex_amp or args.native_amp:
|
|
|
|
_logger.warning("Neither APEX or native Torch AMP is available, using float32. "
|
|
|
|
"Install NVIDA apex or upgrade to PyTorch 1.6")
|
|
|
|
|
|
|
|
torch.manual_seed(args.seed + args.rank)
|
|
|
|
|
|
|
|
model = create_model(
|
|
|
|
args.model,
|
|
|
|
pretrained=args.pretrained,
|
|
|
|
num_classes=args.num_classes,
|
|
|
|
drop_rate=args.drop,
|
|
|
|
drop_connect_rate=args.drop_connect, # DEPRECATED, use drop_path
|
|
|
|
drop_path_rate=args.drop_path,
|
|
|
|
drop_block_rate=args.drop_block,
|
|
|
|
global_pool=args.gp,
|
|
|
|
bn_tf=args.bn_tf,
|
|
|
|
bn_momentum=args.bn_momentum,
|
|
|
|
bn_eps=args.bn_eps,
|
|
|
|
scriptable=args.torchscript,
|
|
|
|
checkpoint_path=args.initial_checkpoint)
|
|
|
|
if args.num_classes is None:
|
|
|
|
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
|
|
|
|
args.num_classes = model.num_classes # FIXME handle model default vs config num_classes more elegantly
|
|
|
|
|
|
|
|
if args.local_rank == 0:
|
|
|
|
_logger.info(
|
|
|
|
f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}')
|
|
|
|
|
|
|
|
data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0)
|
|
|
|
|
|
|
|
# setup augmentation batch splits for contrastive loss or split bn
|
|
|
|
num_aug_splits = 0
|
|
|
|
if args.aug_splits > 0:
|
|
|
|
assert args.aug_splits > 1, 'A split of 1 makes no sense'
|
|
|
|
num_aug_splits = args.aug_splits
|
|
|
|
|
|
|
|
# enable split bn (separate bn stats per batch-portion)
|
|
|
|
if args.split_bn:
|
|
|
|
assert num_aug_splits > 1 or args.resplit
|
|
|
|
model = convert_splitbn_model(model, max(num_aug_splits, 2))
|
|
|
|
|
|
|
|
# move model to GPU, enable channels last layout if set
|
|
|
|
model.cuda()
|
|
|
|
if args.channels_last:
|
|
|
|
model = model.to(memory_format=torch.channels_last)
|
|
|
|
|
|
|
|
# setup synchronized BatchNorm for distributed training
|
|
|
|
if args.distributed and args.sync_bn:
|
|
|
|
assert not args.split_bn
|
|
|
|
if has_apex and use_amp != 'native':
|
|
|
|
# Apex SyncBN preferred unless native amp is activated
|
|
|
|
model = convert_syncbn_model(model)
|
|
|
|
else:
|
|
|
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
|
|
|
if args.local_rank == 0:
|
|
|
|
_logger.info(
|
|
|
|
'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
|
|
|
|
'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')
|
|
|
|
|
|
|
|
if args.torchscript:
|
|
|
|
assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
|
|
|
|
assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
|
|
|
|
model = torch.jit.script(model)
|
|
|
|
|
|
|
|
optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args))
|
|
|
|
|
|
|
|
# setup automatic mixed-precision (AMP) loss scaling and op casting
|
|
|
|
amp_autocast = suppress # do nothing
|
|
|
|
loss_scaler = None
|
|
|
|
if use_amp == 'apex':
|
|
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
|
|
|
|
loss_scaler = ApexScaler()
|
|
|
|
if args.local_rank == 0:
|
|
|
|
_logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
|
|
|
|
elif use_amp == 'native':
|
|
|
|
amp_autocast = torch.cuda.amp.autocast
|
|
|
|
loss_scaler = NativeScaler()
|
|
|
|
if args.local_rank == 0:
|
|
|
|
_logger.info('Using native Torch AMP. Training in mixed precision.')
|
|
|
|
else:
|
|
|
|
if args.local_rank == 0:
|
|
|
|
_logger.info('AMP not enabled. Training in float32.')
|
|
|
|
|
|
|
|
# optionally resume from a checkpoint
|
|
|
|
resume_epoch = None
|
|
|
|
if args.resume:
|
|
|
|
resume_epoch = resume_checkpoint(
|
|
|
|
model, args.resume,
|
|
|
|
optimizer=None if args.no_resume_opt else optimizer,
|
|
|
|
loss_scaler=None if args.no_resume_opt else loss_scaler,
|
|
|
|
log_info=args.local_rank == 0)
|
|
|
|
|
|
|
|
# setup exponential moving average of model weights, SWA could be used here too
|
|
|
|
model_ema = None
|
|
|
|
if args.model_ema:
|
|
|
|
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
|
|
|
|
model_ema = ModelEmaV2(
|
|
|
|
model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
|
|
|
|
if args.resume:
|
|
|
|
load_checkpoint(model_ema.module, args.resume, use_ema=True)
|
|
|
|
|
|
|
|
# setup distributed training
|
|
|
|
if args.distributed:
|
|
|
|
if has_apex and use_amp != 'native':
|
|
|
|
# Apex DDP preferred unless native amp is activated
|
|
|
|
if args.local_rank == 0:
|
|
|
|
_logger.info("Using NVIDIA APEX DistributedDataParallel.")
|
|
|
|
model = ApexDDP(model, delay_allreduce=True)
|
|
|
|
else:
|
|
|
|
if args.local_rank == 0:
|
|
|
|
_logger.info("Using native Torch DistributedDataParallel.")
|
|
|
|
model = NativeDDP(model, device_ids=[args.local_rank]) # can use device str in Torch >= 1.1
|
|
|
|
# NOTE: EMA model does not need to be wrapped by DDP
|
|
|
|
|
|
|
|
# setup learning rate schedule and starting epoch
|
|
|
|
lr_scheduler, num_epochs = create_scheduler(args, optimizer)
|
|
|
|
start_epoch = 0
|
|
|
|
if args.start_epoch is not None:
|
|
|
|
# a specified start_epoch will always override the resume epoch
|
|
|
|
start_epoch = args.start_epoch
|
|
|
|
elif resume_epoch is not None:
|
|
|
|
start_epoch = resume_epoch
|
|
|
|
if lr_scheduler is not None and start_epoch > 0:
|
|
|
|
lr_scheduler.step(start_epoch)
|
|
|
|
|
|
|
|
if args.local_rank == 0:
|
|
|
|
_logger.info('Scheduled epochs: {}'.format(num_epochs))
|
|
|
|
|
|
|
|
# create the train and eval datasets
|
|
|
|
dataset_train = create_dataset(
|
|
|
|
args.dataset,
|
|
|
|
root=args.data_dir, split=args.train_split, is_training=True,
|
|
|
|
batch_size=args.batch_size, repeats=args.epoch_repeats)
|
|
|
|
dataset_eval = create_dataset(
|
|
|
|
args.dataset, root=args.data_dir, split=args.val_split, is_training=False, batch_size=args.batch_size)
|
|
|
|
|
|
|
|
# setup mixup / cutmix
|
|
|
|
collate_fn = None
|
|
|
|
mixup_fn = None
|
|
|
|
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
|
|
|
|
if mixup_active:
|
|
|
|
mixup_args = dict(
|
|
|
|
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
|
|
|
|
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
|
|
|
|
label_smoothing=args.smoothing, num_classes=args.num_classes)
|
|
|
|
if args.prefetcher:
|
|
|
|
assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup)
|
|
|
|
collate_fn = FastCollateMixup(**mixup_args)
|
|
|
|
else:
|
|
|
|
mixup_fn = Mixup(**mixup_args)
|
|
|
|
|
|
|
|
# wrap dataset in AugMix helper
|
|
|
|
if num_aug_splits > 1:
|
|
|
|
dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)
|
|
|
|
|
|
|
|
# create data loaders w/ augmentation pipeiine
|
|
|
|
train_interpolation = args.train_interpolation
|
|
|
|
if args.no_aug or not train_interpolation:
|
|
|
|
train_interpolation = data_config['interpolation']
|
|
|
|
loader_train = create_loader(
|
|
|
|
dataset_train,
|
|
|
|
input_size=data_config['input_size'],
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
is_training=True,
|
|
|
|
use_prefetcher=args.prefetcher,
|
|
|
|
no_aug=args.no_aug,
|
|
|
|
re_prob=args.reprob,
|
|
|
|
re_mode=args.remode,
|
|
|
|
re_count=args.recount,
|
|
|
|
re_split=args.resplit,
|
|
|
|
scale=args.scale,
|
|
|
|
ratio=args.ratio,
|
|
|
|
hflip=args.hflip,
|
|
|
|
vflip=args.vflip,
|
|
|
|
color_jitter=args.color_jitter,
|
|
|
|
auto_augment=args.aa,
|
|
|
|
num_aug_splits=num_aug_splits,
|
|
|
|
interpolation=train_interpolation,
|
|
|
|
mean=data_config['mean'],
|
|
|
|
std=data_config['std'],
|
|
|
|
num_workers=args.workers,
|
|
|
|
distributed=args.distributed,
|
|
|
|
collate_fn=collate_fn,
|
|
|
|
pin_memory=args.pin_mem,
|
|
|
|
use_multi_epochs_loader=args.use_multi_epochs_loader
|
|
|
|
)
|
|
|
|
|
|
|
|
loader_eval = create_loader(
|
|
|
|
dataset_eval,
|
|
|
|
input_size=data_config['input_size'],
|
|
|
|
batch_size=args.validation_batch_size_multiplier * args.batch_size,
|
|
|
|
is_training=False,
|
|
|
|
use_prefetcher=args.prefetcher,
|
|
|
|
interpolation=data_config['interpolation'],
|
|
|
|
mean=data_config['mean'],
|
|
|
|
std=data_config['std'],
|
|
|
|
num_workers=args.workers,
|
|
|
|
distributed=args.distributed,
|
|
|
|
crop_pct=data_config['crop_pct'],
|
|
|
|
pin_memory=args.pin_mem,
|
|
|
|
)
|
|
|
|
|
|
|
|
# setup loss function
|
|
|
|
if args.jsd:
|
|
|
|
assert num_aug_splits > 1 # JSD only valid with aug splits set
|
|
|
|
train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda()
|
|
|
|
elif mixup_active:
|
|
|
|
# smoothing is handled with mixup target transform
|
|
|
|
train_loss_fn = SoftTargetCrossEntropy().cuda()
|
|
|
|
elif args.smoothing:
|
|
|
|
train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda()
|
|
|
|
else:
|
|
|
|
train_loss_fn = nn.CrossEntropyLoss().cuda()
|
|
|
|
validate_loss_fn = nn.CrossEntropyLoss().cuda()
|
|
|
|
|
|
|
|
# setup checkpoint saver and eval metric tracking
|
|
|
|
eval_metric = args.eval_metric
|
|
|
|
best_metric = None
|
|
|
|
best_epoch = None
|
|
|
|
saver = None
|
|
|
|
output_dir = ''
|
|
|
|
if args.local_rank == 0:
|
|
|
|
if args.experiment:
|
|
|
|
exp_name = args.experiment
|
|
|
|
else:
|
|
|
|
exp_name = '-'.join([
|
|
|
|
datetime.now().strftime("%Y%m%d-%H%M%S"),
|
|
|
|
safe_model_name(args.model),
|
|
|
|
str(data_config['input_size'][-1])
|
|
|
|
])
|
|
|
|
output_dir = get_outdir(args.output if args.output else './output/train', exp_name)
|
|
|
|
decreasing = True if eval_metric == 'loss' else False
|
|
|
|
saver = CheckpointSaver(
|
|
|
|
model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
|
|
|
|
checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing, max_history=args.checkpoint_hist)
|
|
|
|
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
|
|
|
|
f.write(args_text)
|
|
|
|
|
|
|
|
try:
|
|
|
|
for epoch in range(start_epoch, num_epochs):
|
|
|
|
if args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
|
|
|
|
loader_train.sampler.set_epoch(epoch)
|
|
|
|
|
|
|
|
train_metrics = train_one_epoch(
|
|
|
|
epoch, model, loader_train, optimizer, train_loss_fn, args,
|
|
|
|
lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
|
|
|
|
amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn)
|
|
|
|
|
|
|
|
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
|
|
|
|
if args.local_rank == 0:
|
|
|
|
_logger.info("Distributing BatchNorm running means and vars")
|
|
|
|
distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
|
|
|
|
|
|
|
|
eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast)
|
|
|
|
|
|
|
|
if model_ema is not None and not args.model_ema_force_cpu:
|
|
|
|
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
|
|
|
|
distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
|
|
|
|
ema_eval_metrics = validate(
|
|
|
|
model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)')
|
|
|
|
eval_metrics = ema_eval_metrics
|
|
|
|
|
|
|
|
if lr_scheduler is not None:
|
|
|
|
# step LR for next epoch
|
|
|
|
lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
|
|
|
|
|
|
|
|
update_summary(
|
|
|
|
epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
|
|
|
|
write_header=best_metric is None, log_wandb=args.use_wandb)
|
|
|
|
|
|
|
|
if saver is not None:
|
|
|
|
# save proper checkpoint with eval metric
|
|
|
|
save_metric = eval_metrics[eval_metric]
|
|
|
|
best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)
|
|
|
|
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
pass
|
|
|
|
if best_metric is not None:
|
|
|
|
_logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
|
|
|
|
|
|
|
|
|
|
|
|
def train_one_epoch(
|
|
|
|
epoch, model, loader, optimizer, loss_fn, args,
|
|
|
|
lr_scheduler=None, saver=None, output_dir='', amp_autocast=suppress,
|
|
|
|
loss_scaler=None, model_ema=None, mixup_fn=None):
|
|
|
|
|
|
|
|
if args.mixup_off_epoch and epoch >= args.mixup_off_epoch:
|
|
|
|
if args.prefetcher and loader.mixup_enabled:
|
|
|
|
loader.mixup_enabled = False
|
|
|
|
elif mixup_fn is not None:
|
|
|
|
mixup_fn.mixup_enabled = False
|
|
|
|
|
|
|
|
second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
|
|
|
|
batch_time_m = AverageMeter()
|
|
|
|
data_time_m = AverageMeter()
|
|
|
|
losses_m = AverageMeter()
|
|
|
|
|
|
|
|
model.train()
|
|
|
|
|
|
|
|
end = time.time()
|
|
|
|
last_idx = len(loader) - 1
|
|
|
|
num_updates = epoch * len(loader)
|
|
|
|
for batch_idx, (input, target) in enumerate(loader):
|
|
|
|
last_batch = batch_idx == last_idx
|
|
|
|
data_time_m.update(time.time() - end)
|
|
|
|
if not args.prefetcher:
|
|
|
|
input, target = input.cuda(), target.cuda()
|
|
|
|
if mixup_fn is not None:
|
|
|
|
input, target = mixup_fn(input, target)
|
|
|
|
if args.channels_last:
|
|
|
|
input = input.contiguous(memory_format=torch.channels_last)
|
|
|
|
|
|
|
|
with amp_autocast():
|
|
|
|
output = model(input)
|
|
|
|
loss = loss_fn(output, target)
|
|
|
|
|
|
|
|
if not args.distributed:
|
|
|
|
losses_m.update(loss.item(), input.size(0))
|
|
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
if loss_scaler is not None:
|
|
|
|
loss_scaler(
|
|
|
|
loss, optimizer,
|
|
|
|
clip_grad=args.clip_grad, clip_mode=args.clip_mode,
|
|
|
|
parameters=model_parameters(model, exclude_head='agc' in args.clip_mode),
|
|
|
|
create_graph=second_order)
|
|
|
|
else:
|
|
|
|
loss.backward(create_graph=second_order)
|
|
|
|
if args.clip_grad is not None:
|
|
|
|
dispatch_clip_grad(
|
|
|
|
model_parameters(model, exclude_head='agc' in args.clip_mode),
|
|
|
|
value=args.clip_grad, mode=args.clip_mode)
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
if model_ema is not None:
|
|
|
|
model_ema.update(model)
|
|
|
|
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
num_updates += 1
|
|
|
|
batch_time_m.update(time.time() - end)
|
|
|
|
if last_batch or batch_idx % args.log_interval == 0:
|
|
|
|
lrl = [param_group['lr'] for param_group in optimizer.param_groups]
|
|
|
|
lr = sum(lrl) / len(lrl)
|
|
|
|
|
|
|
|
if args.distributed:
|
|
|
|
reduced_loss = reduce_tensor(loss.data, args.world_size)
|
|
|
|
losses_m.update(reduced_loss.item(), input.size(0))
|
|
|
|
|
|
|
|
if args.local_rank == 0:
|
|
|
|
_logger.info(
|
|
|
|
'Train: {} [{:>4d}/{} ({:>3.0f}%)] '
|
|
|
|
'Loss: {loss.val:>9.6f} ({loss.avg:>6.4f}) '
|
|
|
|
'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s '
|
|
|
|
'({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
|
|
|
|
'LR: {lr:.3e} '
|
|
|
|
'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format(
|
|
|
|
epoch,
|
|
|
|
batch_idx, len(loader),
|
|
|
|
100. * batch_idx / last_idx,
|
|
|
|
loss=losses_m,
|
|
|
|
batch_time=batch_time_m,
|
|
|
|
rate=input.size(0) * args.world_size / batch_time_m.val,
|
|
|
|
rate_avg=input.size(0) * args.world_size / batch_time_m.avg,
|
|
|
|
lr=lr,
|
|
|
|
data_time=data_time_m))
|
|
|
|
|
|
|
|
if args.save_images and output_dir:
|
|
|
|
torchvision.utils.save_image(
|
|
|
|
input,
|
|
|
|
os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx),
|
|
|
|
padding=0,
|
|
|
|
normalize=True)
|
|
|
|
|
|
|
|
if saver is not None and args.recovery_interval and (
|
|
|
|
last_batch or (batch_idx + 1) % args.recovery_interval == 0):
|
|
|
|
saver.save_recovery(epoch, batch_idx=batch_idx)
|
|
|
|
|
|
|
|
if lr_scheduler is not None:
|
|
|
|
lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg)
|
|
|
|
|
|
|
|
end = time.time()
|
|
|
|
# end for
|
|
|
|
|
|
|
|
if hasattr(optimizer, 'sync_lookahead'):
|
|
|
|
optimizer.sync_lookahead()
|
|
|
|
|
|
|
|
return OrderedDict([('loss', losses_m.avg)])
|
|
|
|
|
|
|
|
|
|
|
|
def validate(model, loader, loss_fn, args, amp_autocast=suppress, log_suffix=''):
|
|
|
|
batch_time_m = AverageMeter()
|
|
|
|
losses_m = AverageMeter()
|
|
|
|
top1_m = AverageMeter()
|
|
|
|
top5_m = AverageMeter()
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
end = time.time()
|
|
|
|
last_idx = len(loader) - 1
|
|
|
|
with torch.no_grad():
|
|
|
|
for batch_idx, (input, target) in enumerate(loader):
|
|
|
|
last_batch = batch_idx == last_idx
|
|
|
|
if not args.prefetcher:
|
|
|
|
input = input.cuda()
|
|
|
|
target = target.cuda()
|
|
|
|
if args.channels_last:
|
|
|
|
input = input.contiguous(memory_format=torch.channels_last)
|
|
|
|
|
|
|
|
with amp_autocast():
|
|
|
|
output = model(input)
|
|
|
|
if isinstance(output, (tuple, list)):
|
|
|
|
output = output[0]
|
|
|
|
|
|
|
|
# augmentation reduction
|
|
|
|
reduce_factor = args.tta
|
|
|
|
if reduce_factor > 1:
|
|
|
|
output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2)
|
|
|
|
target = target[0:target.size(0):reduce_factor]
|
|
|
|
|
|
|
|
loss = loss_fn(output, target)
|
|
|
|
acc1, acc5 = accuracy(output, target, topk=(1, 5))
|
|
|
|
|
|
|
|
if args.distributed:
|
|
|
|
reduced_loss = reduce_tensor(loss.data, args.world_size)
|
|
|
|
acc1 = reduce_tensor(acc1, args.world_size)
|
|
|
|
acc5 = reduce_tensor(acc5, args.world_size)
|
|
|
|
else:
|
|
|
|
reduced_loss = loss.data
|
|
|
|
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
losses_m.update(reduced_loss.item(), input.size(0))
|
|
|
|
top1_m.update(acc1.item(), output.size(0))
|
|
|
|
top5_m.update(acc5.item(), output.size(0))
|
|
|
|
|
|
|
|
batch_time_m.update(time.time() - end)
|
|
|
|
end = time.time()
|
|
|
|
if args.local_rank == 0 and (last_batch or batch_idx % args.log_interval == 0):
|
|
|
|
log_name = 'Test' + log_suffix
|
|
|
|
_logger.info(
|
|
|
|
'{0}: [{1:>4d}/{2}] '
|
|
|
|
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
|
|
|
|
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
|
|
|
|
'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) '
|
|
|
|
'Acc@5: {top5.val:>7.4f} ({top5.avg:>7.4f})'.format(
|
|
|
|
log_name, batch_idx, last_idx, batch_time=batch_time_m,
|
|
|
|
loss=losses_m, top1=top1_m, top5=top5_m))
|
|
|
|
|
|
|
|
metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)])
|
|
|
|
|
|
|
|
return metrics
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|