Simplifying EMA...

pull/297/head
Ross Wightman 4 years ago
parent 80cd31f21f
commit 9214ca0716

@ -6,10 +6,7 @@ from .model_ema import ModelEma
def unwrap_model(model):
if isinstance(model, ModelEma):
return unwrap_model(model.ema)
else:
return model.module if hasattr(model, 'module') else model
return model.module if hasattr(model, 'module') else model
def get_state_dict(model, unwrap_fn=unwrap_model):

@ -2,16 +2,13 @@
Hacked together by / Copyright 2020 Ross Wightman
"""
import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn
_logger = logging.getLogger(__name__)
class ModelEma:
class ModelEma(nn.Module):
""" Model Exponential Moving Average
Keep a moving average of everything in the model state_dict (parameters and buffers).
@ -32,46 +29,20 @@ class ModelEma:
GPU assignment and distributed training wrappers.
I've tested with the sequence in my own train.py for torch.DataParallel, apex.DDP, and single-GPU.
"""
def __init__(self, model, decay=0.9999, device='', resume=''):
def __init__(self, model, decay=0.9999, device=None):
super(ModelEma, self).__init__()
# make a copy of the model for accumulating moving average of weights
self.ema = deepcopy(model)
self.ema.eval()
self.module = deepcopy(model)
self.module.eval()
self.decay = decay
self.device = device # perform ema on different device from model if set
if device:
self.ema.to(device=device)
self.ema_has_module = hasattr(self.ema, 'module')
if resume:
self._load_checkpoint(resume)
for p in self.ema.parameters():
p.requires_grad_(False)
def _load_checkpoint(self, checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
assert isinstance(checkpoint, dict)
if 'state_dict_ema' in checkpoint:
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict_ema'].items():
# ema model may have been wrapped by DataParallel, and need module prefix
if self.ema_has_module:
name = 'module.' + k if not k.startswith('module') else k
else:
name = k
new_state_dict[name] = v
self.ema.load_state_dict(new_state_dict)
_logger.info("Loaded state_dict_ema")
else:
_logger.warning("Failed to find state_dict_ema, starting from loaded model weights")
if device is not None:
self.module.to(device=device)
def update(self, model):
# correct a mismatch in state dict keys
needs_module = hasattr(model, 'module') and not self.ema_has_module
with torch.no_grad():
msd = model.state_dict()
for k, ema_v in self.ema.state_dict().items():
if needs_module:
k = 'module.' + k
model_v = msd[k].detach()
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()):
assert ema_v.shape == model_v.shape
if self.device:
model_v = model_v.to(device=self.device)
ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

@ -568,7 +568,7 @@ def main():
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
ema_eval_metrics = validate(
model_ema.ema, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)')
model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)')
eval_metrics = ema_eval_metrics
if lr_scheduler is not None:

Loading…
Cancel
Save