added MultiEpochsDataLoader

pull/140/head
AFLALO, Jonathan Isaac 5 years ago
parent 8d8677e03b
commit a7f570c9b7

@ -140,6 +140,7 @@ def create_loader(
pin_memory=False,
fp16=False,
tf_preprocessing=False,
use_multi_epochs_loader=False
):
re_num_splits = 0
if re_split:
@ -175,7 +176,12 @@ def create_loader(
if collate_fn is None:
collate_fn = fast_collate if use_prefetcher else torch.utils.data.dataloader.default_collate
loader = torch.utils.data.DataLoader(
loader_class = torch.utils.data.DataLoader
if use_multi_epochs_loader:
loader_class = MultiEpochsDataLoader
loader = loader_class(
dataset,
batch_size=batch_size,
shuffle=sampler is None and is_training,
@ -198,3 +204,35 @@ def create_loader(
)
return loader
class MultiEpochsDataLoader(torch.utils.data.DataLoader):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._DataLoader__initialized = False
self.batch_sampler = _RepeatSampler(self.batch_sampler)
self._DataLoader__initialized = True
self.iterator = super().__iter__()
def __len__(self):
return len(self.batch_sampler.sampler)
def __iter__(self):
for i in range(len(self)):
yield next(self.iterator)
class _RepeatSampler(object):
""" Sampler that repeats forever.
Args:
sampler (Sampler)
"""
def __init__(self, sampler):
self.sampler = sampler
def __iter__(self):
while True:
yield from iter(self.sampler)

@ -198,6 +198,8 @@ parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_MET
parser.add_argument('--tta', type=int, default=0, metavar='N',
help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument('--use-multi-epochs-loader', action='store_true', default=False,
help='use the multi-epochs-loader to save time at the beginning of every epoch')
def _parse_args():
@ -391,6 +393,7 @@ def main():
distributed=args.distributed,
collate_fn=collate_fn,
pin_memory=args.pin_mem,
use_multi_epochs_loader=args.use_multi_epochs_loader
)
eval_dir = os.path.join(args.data, 'val')

Loading…
Cancel
Save