|
|
|
""" Res2Net and Res2NeXt
|
|
|
|
Adapted from Official Pytorch impl at: https://github.com/gasvn/Res2Net/
|
|
|
|
Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .helpers import load_pretrained
|
|
|
|
from .registry import register_model
|
|
|
|
from .resnet import ResNet
|
|
|
|
|
|
|
|
__all__ = []
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'conv1', 'classifier': 'fc',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'res2net50_26w_4s': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth'),
|
|
|
|
'res2net50_48w_2s': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth'),
|
|
|
|
'res2net50_14w_8s': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth'),
|
|
|
|
'res2net50_26w_6s': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth'),
|
|
|
|
'res2net50_26w_8s': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth'),
|
|
|
|
'res2net101_26w_4s': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth'),
|
|
|
|
'res2next50': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth'),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Bottle2neck(nn.Module):
|
|
|
|
""" Res2Net/Res2NeXT Bottleneck
|
|
|
|
Adapted from https://github.com/gasvn/Res2Net/blob/master/res2net.py
|
|
|
|
"""
|
|
|
|
expansion = 4
|
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
|
|
|
cardinality=1, base_width=26, scale=4, dilation=1, first_dilation=None,
|
|
|
|
act_layer=nn.ReLU, norm_layer=None, attn_layer=None, **_):
|
|
|
|
super(Bottle2neck, self).__init__()
|
|
|
|
self.scale = scale
|
|
|
|
self.is_first = stride > 1 or downsample is not None
|
|
|
|
self.num_scales = max(1, scale - 1)
|
|
|
|
width = int(math.floor(planes * (base_width / 64.0))) * cardinality
|
|
|
|
self.width = width
|
|
|
|
outplanes = planes * self.expansion
|
|
|
|
first_dilation = first_dilation or dilation
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d(inplanes, width * scale, kernel_size=1, bias=False)
|
|
|
|
self.bn1 = norm_layer(width * scale)
|
|
|
|
|
|
|
|
convs = []
|
|
|
|
bns = []
|
|
|
|
for i in range(self.num_scales):
|
|
|
|
convs.append(nn.Conv2d(
|
|
|
|
width, width, kernel_size=3, stride=stride, padding=first_dilation,
|
|
|
|
dilation=first_dilation, groups=cardinality, bias=False))
|
|
|
|
bns.append(norm_layer(width))
|
|
|
|
self.convs = nn.ModuleList(convs)
|
|
|
|
self.bns = nn.ModuleList(bns)
|
|
|
|
if self.is_first:
|
|
|
|
# FIXME this should probably have count_include_pad=False, but hurts original weights
|
|
|
|
self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1)
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
4 years ago
|
|
|
else:
|
|
|
|
self.pool = None
|
|
|
|
|
|
|
|
self.conv3 = nn.Conv2d(width * scale, outplanes, kernel_size=1, bias=False)
|
|
|
|
self.bn3 = norm_layer(outplanes)
|
|
|
|
self.se = attn_layer(outplanes) if attn_layer is not None else None
|
|
|
|
|
|
|
|
self.relu = act_layer(inplace=True)
|
|
|
|
self.downsample = downsample
|
|
|
|
|
|
|
|
def zero_init_last_bn(self):
|
|
|
|
nn.init.zeros_(self.bn3.weight)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
residual = x
|
|
|
|
|
|
|
|
out = self.conv1(x)
|
|
|
|
out = self.bn1(out)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
spx = torch.split(out, self.width, 1)
|
|
|
|
spo = []
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
4 years ago
|
|
|
sp = spx[0]
|
|
|
|
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
4 years ago
|
|
|
if self.is_first:
|
|
|
|
sp = spx[i]
|
|
|
|
else:
|
|
|
|
sp = sp + spx[i]
|
|
|
|
sp = conv(sp)
|
|
|
|
sp = bn(sp)
|
|
|
|
sp = self.relu(sp)
|
|
|
|
spo.append(sp)
|
|
|
|
if self.scale > 1:
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
4 years ago
|
|
|
if self.pool is not None:
|
|
|
|
# self.is_first == True, None check for torchscript
|
|
|
|
spo.append(self.pool(spx[-1]))
|
|
|
|
else:
|
|
|
|
spo.append(spx[-1])
|
|
|
|
out = torch.cat(spo, 1)
|
|
|
|
|
|
|
|
out = self.conv3(out)
|
|
|
|
out = self.bn3(out)
|
|
|
|
|
|
|
|
if self.se is not None:
|
|
|
|
out = self.se(out)
|
|
|
|
|
|
|
|
if self.downsample is not None:
|
|
|
|
residual = self.downsample(x)
|
|
|
|
|
|
|
|
out += residual
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def res2net50_26w_4s(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a Res2Net-50_26w_4s model.
|
|
|
|
Args:
|
|
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['res2net50_26w_4s']
|
|
|
|
res2net_block_args = dict(scale=4)
|
|
|
|
model = ResNet(Bottle2neck, [3, 4, 6, 3], base_width=26,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, block_args=res2net_block_args, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def res2net101_26w_4s(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a Res2Net-50_26w_4s model.
|
|
|
|
Args:
|
|
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['res2net101_26w_4s']
|
|
|
|
res2net_block_args = dict(scale=4)
|
|
|
|
model = ResNet(Bottle2neck, [3, 4, 23, 3], base_width=26,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, block_args=res2net_block_args, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def res2net50_26w_6s(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a Res2Net-50_26w_4s model.
|
|
|
|
Args:
|
|
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['res2net50_26w_6s']
|
|
|
|
res2net_block_args = dict(scale=6)
|
|
|
|
model = ResNet(Bottle2neck, [3, 4, 6, 3], base_width=26,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, block_args=res2net_block_args, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def res2net50_26w_8s(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a Res2Net-50_26w_4s model.
|
|
|
|
Args:
|
|
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['res2net50_26w_8s']
|
|
|
|
res2net_block_args = dict(scale=8)
|
|
|
|
model = ResNet(Bottle2neck, [3, 4, 6, 3], base_width=26,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, block_args=res2net_block_args, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def res2net50_48w_2s(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a Res2Net-50_48w_2s model.
|
|
|
|
Args:
|
|
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['res2net50_48w_2s']
|
|
|
|
res2net_block_args = dict(scale=2)
|
|
|
|
model = ResNet(Bottle2neck, [3, 4, 6, 3], base_width=48,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, block_args=res2net_block_args, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def res2net50_14w_8s(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a Res2Net-50_14w_8s model.
|
|
|
|
Args:
|
|
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['res2net50_14w_8s']
|
|
|
|
res2net_block_args = dict(scale=8)
|
|
|
|
model = ResNet(Bottle2neck, [3, 4, 6, 3], base_width=14, num_classes=num_classes, in_chans=in_chans,
|
|
|
|
block_args=res2net_block_args, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def res2next50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Construct Res2NeXt-50 4s
|
|
|
|
Args:
|
|
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['res2next50']
|
|
|
|
res2net_block_args = dict(scale=4)
|
|
|
|
model = ResNet(Bottle2neck, [3, 4, 6, 3], base_width=4, cardinality=8,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, block_args=res2net_block_args, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|