Move SelectKernelConv to conv2d_layers and more

* always apply attention in SelectKernelConv, leave MixedConv for no attention alternative
* make MixedConv torchscript compatible
* refactor first/previous dilation name to make more sense in ResNet* networks
pull/87/head
Ross Wightman 4 years ago
parent 9abe610931
commit cefc9b7761

@ -1,3 +1,5 @@
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
@ -100,14 +102,11 @@ def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)
class MixedConv2d(nn.Module):
class MixedConv2d(nn.ModuleDict):
""" Mixed Grouped Convolution
Based on MDConv and GroupedConv in MixNet impl:
https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mixnet/custom_layers.py
NOTE: This does not currently work with torch.jit.script
"""
def __init__(self, in_channels, out_channels, kernel_size=3,
stride=1, padding='', dilation=1, depthwise=False, **kwargs):
super(MixedConv2d, self).__init__()
@ -131,7 +130,7 @@ class MixedConv2d(nn.Module):
def forward(self, x):
x_split = torch.split(x, self.splits, 1)
x_out = [c(x) for x, c in zip(x_split, self._modules.values())]
x_out = [c(x_split[i]) for i, c in enumerate(self.values())]
x = torch.cat(x_out, 1)
return x
@ -240,6 +239,97 @@ class CondConv2d(nn.Module):
return out
class SelectiveKernelAttn(nn.Module):
def __init__(self, channels, num_paths=2, attn_channels=32,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super(SelectiveKernelAttn, self).__init__()
self.num_paths = num_paths
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc_reduce = nn.Conv2d(channels, attn_channels, kernel_size=1, bias=False)
self.bn = norm_layer(attn_channels)
self.act = act_layer(inplace=True)
self.fc_select = nn.Conv2d(attn_channels, channels * num_paths, kernel_size=1, bias=False)
def forward(self, x):
assert x.shape[1] == self.num_paths
x = torch.sum(x, dim=1)
x = self.pool(x)
x = self.fc_reduce(x)
x = self.bn(x)
x = self.act(x)
x = self.fc_select(x)
B, C, H, W = x.shape
x = x.view(B, self.num_paths, C // self.num_paths, H, W)
x = torch.softmax(x, dim=1)
return x
def _kernel_valid(k):
if isinstance(k, (list, tuple)):
for ki in k:
return _kernel_valid(ki)
assert k >= 3 and k % 2
class SelectiveKernelConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=None, stride=1, dilation=1, groups=1,
attn_reduction=16, min_attn_channels=32, keep_3x3=True, split_input=False,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super(SelectiveKernelConv, self).__init__()
kernel_size = kernel_size or [3, 5]
_kernel_valid(kernel_size)
if not isinstance(kernel_size, list):
kernel_size = [kernel_size] * 2
if keep_3x3:
dilation = [dilation * (k - 1) // 2 for k in kernel_size]
kernel_size = [3] * len(kernel_size)
else:
dilation = [dilation] * len(kernel_size)
num_paths = len(kernel_size)
self.num_paths = num_paths
self.split_input = split_input
self.in_channels = in_channels
self.out_channels = out_channels
if split_input:
assert in_channels % num_paths == 0 and out_channels % num_paths == 0
in_channels = in_channels // num_paths
out_channels = out_channels // num_paths
groups = min(out_channels, groups)
self.paths = nn.ModuleList()
for k, d in zip(kernel_size, dilation):
p = _get_padding(k, stride, d)
self.paths.append(nn.Sequential(OrderedDict([
('conv', nn.Conv2d(
in_channels, out_channels, kernel_size=k, stride=stride, padding=p,
dilation=d, groups=groups, bias=False)),
('bn', norm_layer(out_channels)),
('act', act_layer(inplace=True))
])))
attn_channels = max(int(out_channels / attn_reduction), min_attn_channels)
self.attn = SelectiveKernelAttn(out_channels, num_paths, attn_channels)
def forward(self, x):
if self.split_input:
x_split = torch.split(x, self.in_channels // self.num_paths, 1)
x_paths = [op(x_split[i]) for i, op in enumerate(self.paths)]
else:
x_paths = [op(x) for op in self.paths]
x = torch.stack(x_paths, dim=1)
x_attn = self.attn(x)
x = x * x_attn
if self.split_input:
B, N, C, H, W = x.shape
x = x.reshape(B, N * C, H, W)
else:
x = torch.sum(x, dim=1)
return x
# helper method
def select_conv2d(in_chs, out_chs, kernel_size, **kwargs):
assert 'groups' not in kwargs # only use 'depthwise' bool arg
@ -256,5 +346,3 @@ def select_conv2d(in_chs, out_chs, kernel_size, **kwargs):
else:
m = create_conv2d_pad(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
return m

@ -54,14 +54,15 @@ class Bottle2neck(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=None,
cardinality=1, base_width=26, scale=4, use_se=False,
act_layer=nn.ReLU, norm_layer=None, dilation=1, previous_dilation=1, **_):
act_layer=nn.ReLU, norm_layer=None, dilation=1, first_dilation=None, **_):
super(Bottle2neck, self).__init__()
self.scale = scale
self.is_first = stride > 1 or downsample is not None
self.num_scales = max(1, scale - 1)
width = int(math.floor(planes * (base_width / 64.0))) * cardinality
outplanes = planes * self.expansion
self.width = width
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
self.conv1 = nn.Conv2d(inplanes, width * scale, kernel_size=1, bias=False)
self.bn1 = norm_layer(width * scale)
@ -70,8 +71,8 @@ class Bottle2neck(nn.Module):
bns = []
for i in range(self.num_scales):
convs.append(nn.Conv2d(
width, width, kernel_size=3, stride=stride, padding=dilation,
dilation=dilation, groups=cardinality, bias=False))
width, width, kernel_size=3, stride=stride, padding=first_dilation,
dilation=first_dilation, groups=cardinality, bias=False))
bns.append(norm_layer(width))
self.convs = nn.ModuleList(convs)
self.bns = nn.ModuleList(bns)

@ -131,24 +131,23 @@ class BasicBlock(nn.Module):
__constants__ = ['se', 'downsample'] # for pre 1.4 torchscript compat
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None,
cardinality=1, base_width=64, use_se=False,
reduce_first=1, dilation=1, previous_dilation=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, use_se=False,
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super(BasicBlock, self).__init__()
assert cardinality == 1, 'BasicBlock only supports cardinality of 1'
assert base_width == 64, 'BasicBlock doest not support changing base width'
first_planes = planes // reduce_first
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
self.conv1 = nn.Conv2d(
inplanes, first_planes, kernel_size=3, stride=stride, padding=dilation,
dilation=dilation, bias=False)
inplanes, first_planes, kernel_size=3, stride=stride, padding=first_dilation,
dilation=first_dilation, bias=False)
self.bn1 = norm_layer(first_planes)
self.act1 = act_layer(inplace=True)
self.conv2 = nn.Conv2d(
first_planes, outplanes, kernel_size=3, padding=previous_dilation,
dilation=previous_dilation, bias=False)
first_planes, outplanes, kernel_size=3, padding=dilation, dilation=dilation, bias=False)
self.bn2 = norm_layer(outplanes)
self.se = SEModule(outplanes, planes // 4) if use_se else None
self.act2 = act_layer(inplace=True)
@ -181,21 +180,21 @@ class Bottleneck(nn.Module):
__constants__ = ['se', 'downsample'] # for pre 1.4 torchscript compat
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None,
cardinality=1, base_width=64, use_se=False,
reduce_first=1, dilation=1, previous_dilation=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, use_se=False,
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super(Bottleneck, self).__init__()
width = int(math.floor(planes * (base_width / 64)) * cardinality)
first_planes = width // reduce_first
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False)
self.bn1 = norm_layer(first_planes)
self.act1 = act_layer(inplace=True)
self.conv2 = nn.Conv2d(
first_planes, width, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation, groups=cardinality, bias=False)
padding=first_dilation, dilation=first_dilation, groups=cardinality, bias=False)
self.bn2 = norm_layer(width)
self.act2 = act_layer(inplace=True)
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False)
@ -396,13 +395,11 @@ class ResNet(nn.Module):
first_dilation = 1 if dilation in (1, 2) else 2
bkwargs = dict(
cardinality=self.cardinality, base_width=self.base_width, reduce_first=reduce_first,
use_se=use_se, **kwargs)
layers = [block(
self.inplanes, planes, stride, downsample, dilation=first_dilation, previous_dilation=dilation, **bkwargs)]
dilation=dilation, use_se=use_se, **kwargs)
layers = [block(self.inplanes, planes, stride, downsample, first_dilation=first_dilation, **bkwargs)]
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(
self.inplanes, planes, dilation=dilation, previous_dilation=dilation, **bkwargs))
layers.append(block(self.inplanes, planes, **bkwargs))
return nn.Sequential(*layers)
@ -430,8 +427,8 @@ class ResNet(nn.Module):
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
if self.drop_rate:
x = F.dropout(x, p=float(self.drop_rate), training=self.training)
x = self.fc(x)
return x

@ -1,12 +1,11 @@
import math
from collections import OrderedDict
import torch
from torch import nn as nn
from timm.models.registry import register_model
from timm.models.helpers import load_pretrained
from timm.models.resnet import ResNet, get_padding, SEModule
from timm.models.conv2d_layers import SelectiveKernelConv
from timm.models.resnet import ResNet, SEModule
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
@ -27,113 +26,12 @@ default_cfgs = {
}
class SelectiveKernelAttn(nn.Module):
def __init__(self, channels, num_paths=2, attn_channels=32,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super(SelectiveKernelAttn, self).__init__()
self.num_paths = num_paths
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc_reduce = nn.Conv2d(channels, attn_channels, kernel_size=1, bias=False)
self.bn = norm_layer(attn_channels)
self.act = act_layer(inplace=True)
self.fc_select = nn.Conv2d(attn_channels, channels * num_paths, kernel_size=1, bias=False)
def forward(self, x):
assert x.shape[1] == self.num_paths
x = torch.sum(x, dim=1)
#print('attn sum', x.shape)
x = self.pool(x)
#print('attn pool', x.shape)
x = self.fc_reduce(x)
x = self.bn(x)
x = self.act(x)
x = self.fc_select(x)
#print('attn sel', x.shape)
B, C, H, W = x.shape
x = x.view(B, self.num_paths, C // self.num_paths, H, W)
#print('attn spl', x.shape)
x = torch.softmax(x, dim=1)
return x
def _kernel_valid(k):
if isinstance(k, (list, tuple)):
for ki in k:
return _kernel_valid(ki)
assert k >= 3 and k % 2
class SelectiveKernelConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=[3, 5], stride=1, dilation=1, groups=1,
attn_reduction=16, min_attn_channels=32, keep_3x3=True, use_attn=True,
split_input=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super(SelectiveKernelConv, self).__init__()
_kernel_valid(kernel_size)
if not isinstance(kernel_size, list):
kernel_size = [kernel_size] * 2
if keep_3x3:
dilation = [dilation * (k - 1) // 2 for k in kernel_size]
kernel_size = [3] * len(kernel_size)
else:
dilation = [dilation] * len(kernel_size)
num_paths = len(kernel_size)
self.num_paths = num_paths
self.split_input = split_input
self.in_channels = in_channels
self.out_channels = out_channels
if split_input:
assert in_channels % num_paths == 0 and out_channels % num_paths == 0
in_channels = in_channels // num_paths
out_channels = out_channels // num_paths
groups = min(out_channels, groups)
self.paths = nn.ModuleList()
for k, d in zip(kernel_size, dilation):
p = get_padding(k, stride, d)
self.paths.append(nn.Sequential(OrderedDict([
('conv', nn.Conv2d(
in_channels, out_channels, kernel_size=k, stride=stride, padding=p, dilation=d, groups=groups)),
('bn', norm_layer(out_channels)),
('act', act_layer(inplace=True))
])))
if use_attn:
attn_channels = max(int(out_channels / attn_reduction), min_attn_channels)
self.attn = SelectiveKernelAttn(out_channels, num_paths, attn_channels)
else:
self.attn = None
def forward(self, x):
if self.split_input:
x_split = torch.split(x, self.in_channels // self.num_paths, 1)
x_paths = [op(x_split[i]) for i, op in enumerate(self.paths)]
else:
x_paths = [op(x) for op in self.paths]
if self.attn is not None:
x = torch.stack(x_paths, dim=1)
# print('paths', x_paths.shape)
x_attn = self.attn(x)
#print('attn', x_attn.shape)
x = x * x_attn
#print('amul', x.shape)
if self.split_input:
B, N, C, H, W = x.shape
x = x.reshape(B, N * C, H, W)
else:
x = torch.sum(x, dim=1)
#print('aout', x.shape)
return x
class SelectiveKernelBasic(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None,
cardinality=1, base_width=64, use_se=False, sk_kwargs=None,
reduce_first=1, dilation=1, previous_dilation=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super(SelectiveKernelBasic, self).__init__()
sk_kwargs = sk_kwargs or {}
@ -141,24 +39,25 @@ class SelectiveKernelBasic(nn.Module):
assert base_width == 64, 'BasicBlock doest not support changing base width'
first_planes = planes // reduce_first
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
_selective_first = True # FIXME temporary, for experiments
if _selective_first:
self.conv1 = SelectiveKernelConv(
inplanes, first_planes, stride=stride, dilation=dilation, **sk_kwargs)
inplanes, first_planes, stride=stride, dilation=first_dilation, **sk_kwargs)
else:
self.conv1 = nn.Conv2d(
inplanes, first_planes, kernel_size=3, stride=stride, padding=dilation,
dilation=dilation, bias=False)
inplanes, first_planes, kernel_size=3, stride=stride, padding=first_dilation,
dilation=first_dilation, bias=False)
self.bn1 = norm_layer(first_planes)
self.act1 = act_layer(inplace=True)
if _selective_first:
self.conv2 = nn.Conv2d(
first_planes, outplanes, kernel_size=3, padding=previous_dilation,
dilation=previous_dilation, bias=False)
first_planes, outplanes, kernel_size=3, padding=dilation,
dilation=dilation, bias=False)
else:
self.conv2 = SelectiveKernelConv(
first_planes, outplanes, dilation=previous_dilation, **sk_kwargs)
first_planes, outplanes, dilation=dilation, **sk_kwargs)
self.bn2 = norm_layer(outplanes)
self.se = SEModule(outplanes, planes // 4) if use_se else None
self.act2 = act_layer(inplace=True)
@ -192,19 +91,20 @@ class SelectiveKernelBottleneck(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=None,
cardinality=1, base_width=64, use_se=False, sk_kwargs=None,
reduce_first=1, dilation=1, previous_dilation=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super(SelectiveKernelBottleneck, self).__init__()
sk_kwargs = sk_kwargs or {}
width = int(math.floor(planes * (base_width / 64)) * cardinality)
first_planes = width // reduce_first
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False)
self.bn1 = norm_layer(first_planes)
self.act1 = act_layer(inplace=True)
self.conv2 = SelectiveKernelConv(
first_planes, width, stride=stride, dilation=dilation, groups=cardinality, **sk_kwargs)
first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality, **sk_kwargs)
self.bn2 = norm_layer(width)
self.act2 = act_layer(inplace=True)
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False)

Loading…
Cancel
Save