|
|
|
import json
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
from functools import partial
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.hub import HASH_REGEX, download_url_to_file, urlparse
|
|
|
|
try:
|
|
|
|
from torch.hub import get_dir
|
|
|
|
except ImportError:
|
|
|
|
from torch.hub import _get_torch_home as get_dir
|
|
|
|
|
|
|
|
from timm import __version__
|
|
|
|
try:
|
|
|
|
from huggingface_hub import HfApi, HfFolder, Repository, hf_hub_download, hf_hub_url
|
|
|
|
hf_hub_download = partial(hf_hub_download, library_name="timm", library_version=__version__)
|
|
|
|
_has_hf_hub = True
|
|
|
|
except ImportError:
|
|
|
|
hf_hub_download = None
|
|
|
|
_has_hf_hub = False
|
|
|
|
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def get_cache_dir(child_dir=''):
|
|
|
|
"""
|
|
|
|
Returns the location of the directory where models are cached (and creates it if necessary).
|
|
|
|
"""
|
|
|
|
# Issue warning to move data if old env is set
|
|
|
|
if os.getenv('TORCH_MODEL_ZOO'):
|
|
|
|
_logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead')
|
|
|
|
|
|
|
|
hub_dir = get_dir()
|
|
|
|
child_dir = () if not child_dir else (child_dir,)
|
|
|
|
model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir)
|
|
|
|
os.makedirs(model_dir, exist_ok=True)
|
|
|
|
return model_dir
|
|
|
|
|
|
|
|
|
|
|
|
def download_cached_file(url, check_hash=True, progress=False):
|
|
|
|
parts = urlparse(url)
|
|
|
|
filename = os.path.basename(parts.path)
|
|
|
|
cached_file = os.path.join(get_cache_dir(), filename)
|
|
|
|
if not os.path.exists(cached_file):
|
|
|
|
_logger.info('Downloading: "{}" to {}\n'.format(url, cached_file))
|
|
|
|
hash_prefix = None
|
|
|
|
if check_hash:
|
|
|
|
r = HASH_REGEX.search(filename) # r is Optional[Match[str]]
|
|
|
|
hash_prefix = r.group(1) if r else None
|
|
|
|
download_url_to_file(url, cached_file, hash_prefix, progress=progress)
|
|
|
|
return cached_file
|
|
|
|
|
|
|
|
|
|
|
|
def has_hf_hub(necessary=False):
|
|
|
|
if not _has_hf_hub and necessary:
|
|
|
|
# if no HF Hub module installed, and it is necessary to continue, raise error
|
|
|
|
raise RuntimeError(
|
|
|
|
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
|
|
|
|
return _has_hf_hub
|
|
|
|
|
|
|
|
|
|
|
|
def hf_split(hf_id):
|
|
|
|
# FIXME I may change @ -> # and be parsed as fragment in a URI model name scheme
|
|
|
|
rev_split = hf_id.split('@')
|
|
|
|
assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.'
|
|
|
|
hf_model_id = rev_split[0]
|
|
|
|
hf_revision = rev_split[-1] if len(rev_split) > 1 else None
|
|
|
|
return hf_model_id, hf_revision
|
|
|
|
|
|
|
|
|
|
|
|
def load_cfg_from_json(json_file: Union[str, os.PathLike]):
|
|
|
|
with open(json_file, "r", encoding="utf-8") as reader:
|
|
|
|
text = reader.read()
|
|
|
|
return json.loads(text)
|
|
|
|
|
|
|
|
|
|
|
|
def _download_from_hf(model_id: str, filename: str):
|
|
|
|
hf_model_id, hf_revision = hf_split(model_id)
|
|
|
|
return hf_hub_download(hf_model_id, filename, revision=hf_revision)
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_config_from_hf(model_id: str):
|
|
|
|
assert has_hf_hub(True)
|
|
|
|
cached_file = _download_from_hf(model_id, 'config.json')
|
|
|
|
pretrained_cfg = load_cfg_from_json(cached_file)
|
|
|
|
pretrained_cfg['hf_hub_id'] = model_id # insert hf_hub id for pretrained weight load during model creation
|
|
|
|
pretrained_cfg['source'] = 'hf-hub'
|
|
|
|
model_name = pretrained_cfg.get('architecture')
|
|
|
|
return pretrained_cfg, model_name
|
|
|
|
|
|
|
|
|
|
|
|
def load_state_dict_from_hf(model_id: str, filename: str = 'pytorch_model.bin'):
|
|
|
|
assert has_hf_hub(True)
|
|
|
|
cached_file = _download_from_hf(model_id, filename)
|
|
|
|
state_dict = torch.load(cached_file, map_location='cpu')
|
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
def save_for_hf(model, save_directory, model_config=None):
|
|
|
|
assert has_hf_hub(True)
|
|
|
|
model_config = model_config or {}
|
|
|
|
save_directory = Path(save_directory)
|
|
|
|
save_directory.mkdir(exist_ok=True, parents=True)
|
|
|
|
|
|
|
|
weights_path = save_directory / 'pytorch_model.bin'
|
|
|
|
torch.save(model.state_dict(), weights_path)
|
|
|
|
|
|
|
|
config_path = save_directory / 'config.json'
|
|
|
|
hf_config = model.pretrained_cfg
|
|
|
|
hf_config['num_classes'] = model_config.pop('num_classes', model.num_classes)
|
|
|
|
hf_config['num_features'] = model_config.pop('num_features', model.num_features)
|
|
|
|
hf_config['labels'] = model_config.pop('labels', [f"LABEL_{i}" for i in range(hf_config['num_classes'])])
|
|
|
|
hf_config.update(model_config)
|
|
|
|
|
|
|
|
with config_path.open('w') as f:
|
|
|
|
json.dump(hf_config, f, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
def push_to_hf_hub(
|
|
|
|
model,
|
|
|
|
local_dir,
|
|
|
|
repo_namespace_or_url=None,
|
|
|
|
commit_message='Add model',
|
|
|
|
use_auth_token=True,
|
|
|
|
git_email=None,
|
|
|
|
git_user=None,
|
|
|
|
revision=None,
|
|
|
|
model_config=None,
|
|
|
|
):
|
|
|
|
if repo_namespace_or_url:
|
|
|
|
repo_owner, repo_name = repo_namespace_or_url.rstrip('/').split('/')[-2:]
|
|
|
|
else:
|
|
|
|
if isinstance(use_auth_token, str):
|
|
|
|
token = use_auth_token
|
|
|
|
else:
|
|
|
|
token = HfFolder.get_token()
|
|
|
|
|
|
|
|
if token is None:
|
|
|
|
raise ValueError(
|
|
|
|
"You must login to the Hugging Face hub on this computer by typing `transformers-cli login` and "
|
|
|
|
"entering your credentials to use `use_auth_token=True`. Alternatively, you can pass your own "
|
|
|
|
"token as the `use_auth_token` argument."
|
|
|
|
)
|
|
|
|
|
|
|
|
repo_owner = HfApi().whoami(token)['name']
|
|
|
|
repo_name = Path(local_dir).name
|
|
|
|
|
|
|
|
repo_url = f'https://huggingface.co/{repo_owner}/{repo_name}'
|
|
|
|
|
|
|
|
repo = Repository(
|
|
|
|
local_dir,
|
|
|
|
clone_from=repo_url,
|
|
|
|
use_auth_token=use_auth_token,
|
|
|
|
git_user=git_user,
|
|
|
|
git_email=git_email,
|
|
|
|
revision=revision,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Prepare a default model card that includes the necessary tags to enable inference.
|
|
|
|
readme_text = f'---\ntags:\n- image-classification\n- timm\nlibrary_tag: timm\n---\n# Model card for {repo_name}'
|
|
|
|
with repo.commit(commit_message):
|
|
|
|
# Save model weights and config.
|
|
|
|
save_for_hf(model, repo.local_dir, model_config=model_config)
|
|
|
|
|
|
|
|
# Save a model card if it doesn't exist.
|
|
|
|
readme_path = Path(repo.local_dir) / 'README.md'
|
|
|
|
if not readme_path.exists():
|
|
|
|
readme_path.write_text(readme_text)
|
|
|
|
|
|
|
|
return repo.git_remote_url()
|