Post merge cleanup. Fix potential security issue passing kwargs directly through to serialized web data.

pull/1007/head
Ross Wightman 3 years ago
parent 8a83c41d7b
commit d633a014e6

@ -184,12 +184,12 @@ def load_pretrained(model, default_cfg=None, num_classes=1000, in_chans=3, filte
if not pretrained_url and not hf_hub_id:
_logger.warning("No pretrained weights exist for this model. Using random initialization.")
return
if hf_hub_id and has_hf_hub(necessary=not pretrained_url):
_logger.info(f'Loading pretrained weights from Hugging Face hub ({hf_hub_id})')
state_dict = load_state_dict_from_hf(hf_hub_id)
else:
if pretrained_url:
_logger.info(f'Loading pretrained weights from url ({pretrained_url})')
state_dict = load_state_dict_from_url(pretrained_url, progress=progress, map_location='cpu')
elif hf_hub_id and has_hf_hub(necessary=True):
_logger.info(f'Loading pretrained weights from Hugging Face hub ({hf_hub_id})')
state_dict = load_state_dict_from_hf(hf_hub_id)
if filter_fn is not None:
# for backwards compat with filter fn that take one arg, try one first, the two
try:

@ -16,9 +16,10 @@ from timm import __version__
try:
from huggingface_hub import HfApi, HfFolder, Repository, cached_download, hf_hub_url
cached_download = partial(cached_download, library_name="timm", library_version=__version__)
_has_hf_hub = True
except ImportError:
hf_hub_url = None
cached_download = None
_has_hf_hub = False
_logger = logging.getLogger(__name__)
@ -53,11 +54,11 @@ def download_cached_file(url, check_hash=True, progress=False):
def has_hf_hub(necessary=False):
if hf_hub_url is None and necessary:
if not _has_hf_hub and necessary:
# if no HF Hub module installed and it is necessary to continue, raise error
raise RuntimeError(
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
return hf_hub_url is not None
return _has_hf_hub
def hf_split(hf_id):
@ -96,8 +97,9 @@ def load_state_dict_from_hf(model_id: str):
return state_dict
def save_pretrained_for_hf(model, save_directory, **config_kwargs):
def save_for_hf(model, save_directory, model_config=None):
assert has_hf_hub(True)
model_config = model_config or {}
save_directory = Path(save_directory)
save_directory.mkdir(exist_ok=True, parents=True)
@ -105,14 +107,14 @@ def save_pretrained_for_hf(model, save_directory, **config_kwargs):
torch.save(model.state_dict(), weights_path)
config_path = save_directory / 'config.json'
config = model.default_cfg
config['num_classes'] = config_kwargs.pop('num_classes', model.num_classes)
config['num_features'] = config_kwargs.pop('num_features', model.num_features)
config['labels'] = config_kwargs.pop('labels', [f"LABEL_{i}" for i in range(config['num_classes'])])
config.update(config_kwargs)
hf_config = model.default_cfg
hf_config['num_classes'] = model_config.pop('num_classes', model.num_classes)
hf_config['num_features'] = model_config.pop('num_features', model.num_features)
hf_config['labels'] = model_config.pop('labels', [f"LABEL_{i}" for i in range(hf_config['num_classes'])])
hf_config.update(model_config)
with config_path.open('w') as f:
json.dump(config, f, indent=2)
json.dump(hf_config, f, indent=2)
def push_to_hf_hub(
@ -124,9 +126,8 @@ def push_to_hf_hub(
git_email=None,
git_user=None,
revision=None,
**config_kwargs
model_config=None,
):
if repo_namespace_or_url:
repo_owner, repo_name = repo_namespace_or_url.rstrip('/').split('/')[-2:]
else:
@ -160,7 +161,7 @@ def push_to_hf_hub(
readme_text = f'---\ntags:\n- image-classification\n- timm\nlibrary_tag: timm\n---\n# Model card for {repo_name}'
with repo.commit(commit_message):
# Save model weights and config.
save_pretrained_for_hf(model, repo.local_dir, **config_kwargs)
save_for_hf(model, repo.local_dir, model_config=model_config)
# Save a model card if it doesn't exist.
readme_path = Path(repo.local_dir) / 'README.md'

Loading…
Cancel
Save