|
|
|
import json
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
from functools import partial
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Optional, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.hub import (HASH_REGEX, download_url_to_file,
|
|
|
|
load_state_dict_from_url, urlparse)
|
|
|
|
|
|
|
|
try:
|
|
|
|
from torch.hub import get_dir
|
|
|
|
except ImportError:
|
|
|
|
from torch.hub import _get_torch_home as get_dir
|
|
|
|
|
|
|
|
from timm import __version__
|
|
|
|
|
|
|
|
try:
|
|
|
|
from huggingface_hub import (HfApi, HfFolder, Repository, cached_download,
|
|
|
|
hf_hub_url)
|
|
|
|
cached_download = partial(cached_download, library_name="timm", library_version=__version__)
|
|
|
|
except ImportError:
|
|
|
|
hf_hub_url = None
|
|
|
|
cached_download = None
|
|
|
|
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def get_cache_dir(child_dir=''):
|
|
|
|
"""
|
|
|
|
Returns the location of the directory where models are cached (and creates it if necessary).
|
|
|
|
"""
|
|
|
|
# Issue warning to move data if old env is set
|
|
|
|
if os.getenv('TORCH_MODEL_ZOO'):
|
|
|
|
_logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead')
|
|
|
|
|
|
|
|
hub_dir = get_dir()
|
|
|
|
child_dir = () if not child_dir else (child_dir,)
|
|
|
|
model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir)
|
|
|
|
os.makedirs(model_dir, exist_ok=True)
|
|
|
|
return model_dir
|
|
|
|
|
|
|
|
|
|
|
|
def download_cached_file(url, check_hash=True, progress=False):
|
|
|
|
parts = urlparse(url)
|
|
|
|
filename = os.path.basename(parts.path)
|
|
|
|
cached_file = os.path.join(get_cache_dir(), filename)
|
|
|
|
if not os.path.exists(cached_file):
|
|
|
|
_logger.info('Downloading: "{}" to {}\n'.format(url, cached_file))
|
|
|
|
hash_prefix = None
|
|
|
|
if check_hash:
|
|
|
|
r = HASH_REGEX.search(filename) # r is Optional[Match[str]]
|
|
|
|
hash_prefix = r.group(1) if r else None
|
|
|
|
download_url_to_file(url, cached_file, hash_prefix, progress=progress)
|
|
|
|
return cached_file
|
|
|
|
|
|
|
|
|
|
|
|
def has_hf_hub(necessary=False):
|
|
|
|
if hf_hub_url is None and necessary:
|
|
|
|
# if no HF Hub module installed and it is necessary to continue, raise error
|
|
|
|
raise RuntimeError(
|
|
|
|
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
|
|
|
|
return hf_hub_url is not None
|
|
|
|
|
|
|
|
|
|
|
|
def hf_split(hf_id):
|
|
|
|
rev_split = hf_id.split('@')
|
|
|
|
assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.'
|
|
|
|
hf_model_id = rev_split[0]
|
|
|
|
hf_revision = rev_split[-1] if len(rev_split) > 1 else None
|
|
|
|
return hf_model_id, hf_revision
|
|
|
|
|
|
|
|
|
|
|
|
def load_cfg_from_json(json_file: Union[str, os.PathLike]):
|
|
|
|
with open(json_file, "r", encoding="utf-8") as reader:
|
|
|
|
text = reader.read()
|
|
|
|
return json.loads(text)
|
|
|
|
|
|
|
|
|
|
|
|
def _download_from_hf(model_id: str, filename: str):
|
|
|
|
hf_model_id, hf_revision = hf_split(model_id)
|
|
|
|
url = hf_hub_url(hf_model_id, filename, revision=hf_revision)
|
|
|
|
return cached_download(url, cache_dir=get_cache_dir('hf'))
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_config_from_hf(model_id: str):
|
|
|
|
assert has_hf_hub(True)
|
|
|
|
cached_file = _download_from_hf(model_id, 'config.json')
|
|
|
|
default_cfg = load_cfg_from_json(cached_file)
|
|
|
|
default_cfg['hf_hub'] = model_id # insert hf_hub id for pretrained weight load during model creation
|
|
|
|
model_name = default_cfg.get('architecture')
|
|
|
|
return default_cfg, model_name
|
|
|
|
|
|
|
|
|
|
|
|
def load_state_dict_from_hf(model_id: str):
|
|
|
|
assert has_hf_hub(True)
|
|
|
|
cached_file = _download_from_hf(model_id, 'pytorch_model.bin')
|
|
|
|
state_dict = torch.load(cached_file, map_location='cpu')
|
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
def save_pretrained_for_hf(model, save_directory, **config_kwargs):
|
|
|
|
assert has_hf_hub(True)
|
|
|
|
save_directory = Path(save_directory)
|
|
|
|
save_directory.mkdir(exist_ok=True, parents=True)
|
|
|
|
|
|
|
|
weights_path = save_directory / 'pytorch_model.bin'
|
|
|
|
torch.save(model.state_dict(), weights_path)
|
|
|
|
|
|
|
|
config_path = save_directory / 'config.json'
|
|
|
|
config = model.default_cfg
|
|
|
|
config.update(config_kwargs)
|
|
|
|
|
|
|
|
with config_path.open('w') as f:
|
|
|
|
json.dump(config, f, indent=4)
|
|
|
|
|
|
|
|
|
|
|
|
def push_to_hf_hub(
|
|
|
|
model,
|
|
|
|
repo_path_or_name: Optional[str] = None,
|
|
|
|
repo_url: Optional[str] = None,
|
|
|
|
commit_message: Optional[str] = "Add model",
|
|
|
|
organization: Optional[str] = None,
|
|
|
|
private: Optional[bool] = None,
|
|
|
|
api_endpoint: Optional[str] = None,
|
|
|
|
use_auth_token: Optional[Union[bool, str]] = None,
|
|
|
|
git_user: Optional[str] = None,
|
|
|
|
git_email: Optional[str] = None,
|
|
|
|
config: Optional[dict] = None,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Upload model checkpoint and config to the 🤗 Model Hub while synchronizing a local clone of the repo in
|
|
|
|
:obj:`repo_path_or_name`.
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
repo_path_or_name (:obj:`str`, `optional`):
|
|
|
|
Can either be a repository name for your model or tokenizer in the Hub or a path to a local folder (in
|
|
|
|
which case the repository will have the name of that local folder). If not specified, will default to
|
|
|
|
the name given by :obj:`repo_url` and a local directory with that name will be created.
|
|
|
|
repo_url (:obj:`str`, `optional`):
|
|
|
|
Specify this in case you want to push to an existing repository in the hub. If unspecified, a new
|
|
|
|
repository will be created in your namespace (unless you specify an :obj:`organization`) with
|
|
|
|
:obj:`repo_name`.
|
|
|
|
commit_message (:obj:`str`, `optional`):
|
|
|
|
Message to commit while pushing. Will default to :obj:`"add config"`, :obj:`"add tokenizer"` or
|
|
|
|
:obj:`"add model"` depending on the type of the class.
|
|
|
|
organization (:obj:`str`, `optional`):
|
|
|
|
Organization in which you want to push your model or tokenizer (you must be a member of this
|
|
|
|
organization).
|
|
|
|
private (:obj:`bool`, `optional`):
|
|
|
|
Whether or not the repository created should be private (requires a paying subscription).
|
|
|
|
api_endpoint (:obj:`str`, `optional`):
|
|
|
|
The API endpoint to use when pushing the model to the hub.
|
|
|
|
use_auth_token (:obj:`bool` or :obj:`str`, `optional`):
|
|
|
|
The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
|
|
|
|
generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). Will default to
|
|
|
|
:obj:`True` if :obj:`repo_url` is not specified.
|
|
|
|
git_user (``str``, `optional`):
|
|
|
|
will override the ``git config user.name`` for committing and pushing files to the hub.
|
|
|
|
git_email (``str``, `optional`):
|
|
|
|
will override the ``git config user.email`` for committing and pushing files to the hub.
|
|
|
|
config (:obj:`dict`, `optional`):
|
|
|
|
Configuration object to be saved alongside the model weights.
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The url of the commit of your model in the given repository.
|
|
|
|
"""
|
|
|
|
assert has_hf_hub(True)
|
|
|
|
if repo_path_or_name is None and repo_url is None:
|
|
|
|
raise ValueError(
|
|
|
|
"You need to specify a `repo_path_or_name` or a `repo_url`."
|
|
|
|
)
|
|
|
|
|
|
|
|
if use_auth_token is None and repo_url is None:
|
|
|
|
token = HfFolder.get_token()
|
|
|
|
if token is None:
|
|
|
|
raise ValueError(
|
|
|
|
"You must login to the Hugging Face hub on this computer by typing `transformers-cli login` and "
|
|
|
|
"entering your credentials to use `use_auth_token=True`. Alternatively, you can pass your own "
|
|
|
|
"token as the `use_auth_token` argument."
|
|
|
|
)
|
|
|
|
elif isinstance(use_auth_token, str):
|
|
|
|
token = use_auth_token
|
|
|
|
else:
|
|
|
|
token = None
|
|
|
|
|
|
|
|
if repo_path_or_name is None:
|
|
|
|
repo_path_or_name = repo_url.split("/")[-1]
|
|
|
|
|
|
|
|
# If no URL is passed and there's no path to a directory containing files, create a repo
|
|
|
|
if repo_url is None and not os.path.exists(repo_path_or_name):
|
|
|
|
repo_name = Path(repo_path_or_name).name
|
|
|
|
repo_url = HfApi(endpoint=api_endpoint).create_repo(
|
|
|
|
token,
|
|
|
|
repo_name,
|
|
|
|
organization=organization,
|
|
|
|
private=private,
|
|
|
|
repo_type=None,
|
|
|
|
exist_ok=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
repo = Repository(
|
|
|
|
repo_path_or_name,
|
|
|
|
clone_from=repo_url,
|
|
|
|
use_auth_token=use_auth_token,
|
|
|
|
git_user=git_user,
|
|
|
|
git_email=git_email,
|
|
|
|
)
|
|
|
|
repo.git_pull(rebase=True)
|
|
|
|
|
|
|
|
save_config = model.default_cfg
|
|
|
|
save_config.update(config or {})
|
|
|
|
with repo.commit(commit_message):
|
|
|
|
save_pretrained_for_hf(model, repo.local_dir, **save_config)
|