|
|
|
import math
|
|
|
|
|
|
|
|
from torch import nn as nn
|
|
|
|
|
|
|
|
from timm.models.registry import register_model
|
|
|
|
from timm.models.helpers import load_pretrained
|
|
|
|
from timm.models.conv2d_layers import SelectiveKernelConv, ConvBnAct
|
|
|
|
from timm.models.resnet import ResNet, SEModule
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'conv1', 'classifier': 'fc',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'skresnet18': _cfg(url=''),
|
|
|
|
'skresnet26d': _cfg(),
|
|
|
|
'skresnet50': _cfg(),
|
|
|
|
'skresnet50d': _cfg(),
|
|
|
|
'skresnext50_32x4d': _cfg(),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class SelectiveKernelBasic(nn.Module):
|
|
|
|
expansion = 1
|
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64,
|
|
|
|
use_se=False, sk_kwargs=None, reduce_first=1, dilation=1, first_dilation=None,
|
|
|
|
drop_block=None, drop_path=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
|
|
|
|
super(SelectiveKernelBasic, self).__init__()
|
|
|
|
|
|
|
|
sk_kwargs = sk_kwargs or {}
|
|
|
|
conv_kwargs = dict(drop_block=drop_block, act_layer=act_layer, norm_layer=norm_layer)
|
|
|
|
assert cardinality == 1, 'BasicBlock only supports cardinality of 1'
|
|
|
|
assert base_width == 64, 'BasicBlock doest not support changing base width'
|
|
|
|
first_planes = planes // reduce_first
|
|
|
|
out_planes = planes * self.expansion
|
|
|
|
first_dilation = first_dilation or dilation
|
|
|
|
|
|
|
|
_selective_first = True # FIXME temporary, for experiments
|
|
|
|
if _selective_first:
|
|
|
|
self.conv1 = SelectiveKernelConv(
|
|
|
|
inplanes, first_planes, stride=stride, dilation=first_dilation, **conv_kwargs, **sk_kwargs)
|
|
|
|
conv_kwargs['act_layer'] = None
|
|
|
|
self.conv2 = ConvBnAct(
|
|
|
|
first_planes, out_planes, kernel_size=3, dilation=dilation, **conv_kwargs)
|
|
|
|
else:
|
|
|
|
self.conv1 = ConvBnAct(
|
|
|
|
inplanes, first_planes, kernel_size=3, stride=stride, dilation=first_dilation, **conv_kwargs)
|
|
|
|
conv_kwargs['act_layer'] = None
|
|
|
|
self.conv2 = SelectiveKernelConv(
|
|
|
|
first_planes, out_planes, dilation=dilation, **conv_kwargs, **sk_kwargs)
|
|
|
|
self.se = SEModule(out_planes, planes // 4) if use_se else None
|
|
|
|
self.act = act_layer(inplace=True)
|
|
|
|
self.downsample = downsample
|
|
|
|
self.stride = stride
|
|
|
|
self.dilation = dilation
|
|
|
|
self.drop_block = drop_block
|
|
|
|
self.drop_path = drop_path
|
|
|
|
|
|
|
|
def zero_init_last_bn(self):
|
|
|
|
nn.init.zeros_(self.conv2.bn.weight)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
residual = x
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
if self.se is not None:
|
|
|
|
x = self.se(x)
|
|
|
|
if self.drop_path is not None:
|
|
|
|
x = self.drop_path(x)
|
|
|
|
if self.downsample is not None:
|
|
|
|
residual = self.downsample(residual)
|
|
|
|
x += residual
|
|
|
|
x = self.act(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class SelectiveKernelBottleneck(nn.Module):
|
|
|
|
expansion = 4
|
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
|
|
|
cardinality=1, base_width=64, use_se=False, sk_kwargs=None,
|
|
|
|
reduce_first=1, dilation=1, first_dilation=None,
|
|
|
|
drop_block=None, drop_path=None,
|
|
|
|
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
|
|
|
|
super(SelectiveKernelBottleneck, self).__init__()
|
|
|
|
|
|
|
|
sk_kwargs = sk_kwargs or {}
|
|
|
|
conv_kwargs = dict(drop_block=drop_block, act_layer=act_layer, norm_layer=norm_layer)
|
|
|
|
width = int(math.floor(planes * (base_width / 64)) * cardinality)
|
|
|
|
first_planes = width // reduce_first
|
|
|
|
out_planes = planes * self.expansion
|
|
|
|
first_dilation = first_dilation or dilation
|
|
|
|
|
|
|
|
self.conv1 = ConvBnAct(inplanes, first_planes, kernel_size=1, **conv_kwargs)
|
|
|
|
self.conv2 = SelectiveKernelConv(
|
|
|
|
first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality,
|
|
|
|
**conv_kwargs, **sk_kwargs)
|
|
|
|
conv_kwargs['act_layer'] = None
|
|
|
|
self.conv3 = ConvBnAct(width, out_planes, kernel_size=1, **conv_kwargs)
|
|
|
|
self.se = SEModule(out_planes, planes // 4) if use_se else None
|
|
|
|
self.act = act_layer(inplace=True)
|
|
|
|
self.downsample = downsample
|
|
|
|
self.stride = stride
|
|
|
|
self.dilation = dilation
|
|
|
|
self.drop_block = drop_block
|
|
|
|
self.drop_path = drop_path
|
|
|
|
|
|
|
|
def zero_init_last_bn(self):
|
|
|
|
nn.init.zeros_(self.conv3.bn.weight)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
residual = x
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.conv3(x)
|
|
|
|
if self.se is not None:
|
|
|
|
x = self.se(x)
|
|
|
|
if self.drop_path is not None:
|
|
|
|
x = self.drop_path(x)
|
|
|
|
if self.downsample is not None:
|
|
|
|
residual = self.downsample(residual)
|
|
|
|
x += residual
|
|
|
|
x = self.act(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a ResNet-18 model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['skresnet18']
|
|
|
|
sk_kwargs = dict(
|
|
|
|
min_attn_channels=16,
|
|
|
|
)
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans,
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def sksresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a ResNet-18 model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['skresnet18']
|
|
|
|
sk_kwargs = dict(
|
|
|
|
min_attn_channels=16,
|
|
|
|
split_input=True
|
|
|
|
)
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans,
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a ResNet-26 model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['skresnet26d']
|
|
|
|
sk_kwargs = dict(
|
|
|
|
keep_3x3=False,
|
|
|
|
)
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBottleneck, [2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs),
|
|
|
|
**kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a Select Kernel ResNet-50 model.
|
|
|
|
Based on config in "Compounding the Performance Improvements of Assembled Techniques in a
|
|
|
|
Convolutional Neural Network"
|
|
|
|
"""
|
|
|
|
sk_kwargs = dict(
|
|
|
|
attn_reduction=2,
|
|
|
|
)
|
|
|
|
default_cfg = default_cfgs['skresnet50']
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans,
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnet50d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a Select Kernel ResNet-50-D model.
|
|
|
|
Based on config in "Compounding the Performance Improvements of Assembled Techniques in a
|
|
|
|
Convolutional Neural Network"
|
|
|
|
"""
|
|
|
|
sk_kwargs = dict(
|
|
|
|
attn_reduction=2,
|
|
|
|
)
|
|
|
|
default_cfg = default_cfgs['skresnet50d']
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBottleneck, [3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to
|
|
|
|
the SKNet50 model in the Select Kernel Paper
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['skresnext50_32x4d']
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBottleneck, [3, 4, 6, 3], cardinality=32, base_width=4,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|