|
|
|
import math
|
|
|
|
|
|
|
|
from torch import nn as nn
|
|
|
|
|
|
|
|
from timm.models.registry import register_model
|
|
|
|
from timm.models.helpers import load_pretrained
|
|
|
|
from timm.models.conv2d_layers import SelectiveKernelConv
|
|
|
|
from timm.models.resnet import ResNet, SEModule
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'conv1', 'classifier': 'fc',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'skresnet18': _cfg(url=''),
|
|
|
|
'skresnet26d': _cfg()
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class SelectiveKernelBasic(nn.Module):
|
|
|
|
expansion = 1
|
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
|
|
|
cardinality=1, base_width=64, use_se=False, sk_kwargs=None,
|
|
|
|
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
|
|
|
|
super(SelectiveKernelBasic, self).__init__()
|
|
|
|
|
|
|
|
sk_kwargs = sk_kwargs or {}
|
|
|
|
assert cardinality == 1, 'BasicBlock only supports cardinality of 1'
|
|
|
|
assert base_width == 64, 'BasicBlock doest not support changing base width'
|
|
|
|
first_planes = planes // reduce_first
|
|
|
|
outplanes = planes * self.expansion
|
|
|
|
first_dilation = first_dilation or dilation
|
|
|
|
|
|
|
|
_selective_first = True # FIXME temporary, for experiments
|
|
|
|
if _selective_first:
|
|
|
|
self.conv1 = SelectiveKernelConv(
|
|
|
|
inplanes, first_planes, stride=stride, dilation=first_dilation, **sk_kwargs)
|
|
|
|
else:
|
|
|
|
self.conv1 = nn.Conv2d(
|
|
|
|
inplanes, first_planes, kernel_size=3, stride=stride, padding=first_dilation,
|
|
|
|
dilation=first_dilation, bias=False)
|
|
|
|
self.bn1 = norm_layer(first_planes)
|
|
|
|
self.act1 = act_layer(inplace=True)
|
|
|
|
if _selective_first:
|
|
|
|
self.conv2 = nn.Conv2d(
|
|
|
|
first_planes, outplanes, kernel_size=3, padding=dilation,
|
|
|
|
dilation=dilation, bias=False)
|
|
|
|
else:
|
|
|
|
self.conv2 = SelectiveKernelConv(
|
|
|
|
first_planes, outplanes, dilation=dilation, **sk_kwargs)
|
|
|
|
self.bn2 = norm_layer(outplanes)
|
|
|
|
self.se = SEModule(outplanes, planes // 4) if use_se else None
|
|
|
|
self.act2 = act_layer(inplace=True)
|
|
|
|
self.downsample = downsample
|
|
|
|
self.stride = stride
|
|
|
|
self.dilation = dilation
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
residual = x
|
|
|
|
|
|
|
|
out = self.conv1(x)
|
|
|
|
out = self.bn1(out)
|
|
|
|
out = self.act1(out)
|
|
|
|
out = self.conv2(out)
|
|
|
|
out = self.bn2(out)
|
|
|
|
|
|
|
|
if self.se is not None:
|
|
|
|
out = self.se(out)
|
|
|
|
|
|
|
|
if self.downsample is not None:
|
|
|
|
residual = self.downsample(x)
|
|
|
|
|
|
|
|
out += residual
|
|
|
|
out = self.act2(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class SelectiveKernelBottleneck(nn.Module):
|
|
|
|
expansion = 4
|
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
|
|
|
cardinality=1, base_width=64, use_se=False, sk_kwargs=None,
|
|
|
|
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
|
|
|
|
super(SelectiveKernelBottleneck, self).__init__()
|
|
|
|
|
|
|
|
sk_kwargs = sk_kwargs or {}
|
|
|
|
width = int(math.floor(planes * (base_width / 64)) * cardinality)
|
|
|
|
first_planes = width // reduce_first
|
|
|
|
outplanes = planes * self.expansion
|
|
|
|
first_dilation = first_dilation or dilation
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False)
|
|
|
|
self.bn1 = norm_layer(first_planes)
|
|
|
|
self.act1 = act_layer(inplace=True)
|
|
|
|
self.conv2 = SelectiveKernelConv(
|
|
|
|
first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality, **sk_kwargs)
|
|
|
|
self.bn2 = norm_layer(width)
|
|
|
|
self.act2 = act_layer(inplace=True)
|
|
|
|
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False)
|
|
|
|
self.bn3 = norm_layer(outplanes)
|
|
|
|
self.se = SEModule(outplanes, planes // 4) if use_se else None
|
|
|
|
self.act3 = act_layer(inplace=True)
|
|
|
|
self.downsample = downsample
|
|
|
|
self.stride = stride
|
|
|
|
self.dilation = dilation
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
residual = x
|
|
|
|
|
|
|
|
out = self.conv1(x)
|
|
|
|
out = self.bn1(out)
|
|
|
|
out = self.act1(out)
|
|
|
|
|
|
|
|
out = self.conv2(out)
|
|
|
|
out = self.bn2(out)
|
|
|
|
out = self.act2(out)
|
|
|
|
|
|
|
|
out = self.conv3(out)
|
|
|
|
out = self.bn3(out)
|
|
|
|
|
|
|
|
if self.se is not None:
|
|
|
|
out = self.se(out)
|
|
|
|
|
|
|
|
if self.downsample is not None:
|
|
|
|
residual = self.downsample(x)
|
|
|
|
|
|
|
|
out += residual
|
|
|
|
out = self.act3(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a ResNet-26 model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['skresnet26d']
|
|
|
|
sk_kwargs = dict(
|
|
|
|
keep_3x3=False,
|
|
|
|
)
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBottleneck, [2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs),
|
|
|
|
**kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a ResNet-18 model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['skresnet18']
|
|
|
|
sk_kwargs = dict(
|
|
|
|
min_attn_channels=16,
|
|
|
|
)
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans,
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def sksresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a ResNet-18 model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['skresnet18']
|
|
|
|
sk_kwargs = dict(
|
|
|
|
min_attn_channels=16,
|
|
|
|
split_input=True
|
|
|
|
)
|
|
|
|
model = ResNet(
|
|
|
|
SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans,
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|