|
|
|
"""
|
|
|
|
BlurPool layer inspired by
|
|
|
|
- Kornia's Max_BlurPool2d
|
|
|
|
- Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar`
|
|
|
|
|
|
|
|
Hacked together by Chris Ha and Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import numpy as np
|
|
|
|
from .padding import get_padding
|
|
|
|
|
|
|
|
|
|
|
|
class BlurPool2d(nn.Module):
|
|
|
|
r"""Creates a module that computes blurs and downsample a given feature map.
|
|
|
|
See :cite:`zhang2019shiftinvar` for more details.
|
|
|
|
Corresponds to the Downsample class, which does blurring and subsampling
|
|
|
|
Args:
|
|
|
|
channels = Number of input channels
|
|
|
|
blur_filter_size (int): binomial filter size for blurring. currently supports 3 (default) and 5.
|
|
|
|
stride (int): downsampling filter stride
|
|
|
|
Shape:
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: the transformed tensor.
|
|
|
|
Examples:
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, channels, blur_filter_size=3, stride=2) -> None:
|
|
|
|
super(BlurPool2d, self).__init__()
|
|
|
|
assert blur_filter_size > 1
|
|
|
|
self.channels = channels
|
|
|
|
self.blur_filter_size = blur_filter_size
|
|
|
|
self.stride = stride
|
|
|
|
|
|
|
|
pad_size = [get_padding(blur_filter_size, stride, dilation=1)] * 4
|
|
|
|
self.padding = nn.ReflectionPad2d(pad_size)
|
|
|
|
|
|
|
|
blur_matrix = (np.poly1d((0.5, 0.5)) ** (blur_filter_size - 1)).coeffs
|
|
|
|
blur_filter = torch.Tensor(blur_matrix[:, None] * blur_matrix[None, :])
|
|
|
|
# FIXME figure a clean hack to prevent the filter from getting saved in weights, but still
|
|
|
|
# plays nice with recursive module apply for fn like .cuda(), .type(), etc -RW
|
|
|
|
self.register_buffer('blur_filter', blur_filter[None, None, :, :].repeat((self.channels, 1, 1, 1)))
|
|
|
|
|
|
|
|
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: # type: ignore
|
|
|
|
if not torch.is_tensor(input_tensor):
|
|
|
|
raise TypeError("Input input type is not a torch.Tensor. Got {}".format(type(input_tensor)))
|
|
|
|
if not len(input_tensor.shape) == 4:
|
|
|
|
raise ValueError("Invalid input shape, we expect BxCxHxW. Got: {}".format(input_tensor.shape))
|
|
|
|
# apply blur_filter on input
|
|
|
|
return F.conv2d(
|
|
|
|
self.padding(input_tensor),
|
|
|
|
self.blur_filter.type(input_tensor.dtype),
|
|
|
|
stride=self.stride,
|
|
|
|
groups=input_tensor.shape[1])
|