Initial implementation of blur layer. currently tests as correct against Downsample of original githubpull/101/head
parent
c99a5abed4
commit
3a287a6e76
@ -0,0 +1,68 @@
|
||||
'''independent attempt to implement
|
||||
|
||||
MaxBlurPool2d in a more general fashion(separate maxpooling from BlurPool)
|
||||
which was again inspired by
|
||||
Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar`
|
||||
|
||||
'''
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class BlurPool2d(nn.Module):
|
||||
r"""Creates a module that computes blurs and downsample a given feature map.
|
||||
See :cite:`zhang2019shiftinvar` for more details.
|
||||
Corresponds to the Downsample class, which does blurring and subsampling
|
||||
Args:
|
||||
channels = Number of input channels
|
||||
blur_filter_size (int): filter size for blurring. currently supports either 3 or 5 (most common)
|
||||
defaults to 3.
|
||||
stride (int): downsampling filter stride
|
||||
Shape:
|
||||
Returns:
|
||||
torch.Tensor: the transformed tensor.
|
||||
Examples:
|
||||
"""
|
||||
|
||||
def __init__(self, channels=None, blur_filter_size=3, stride=2) -> None:
|
||||
super(BlurPool2d, self).__init__()
|
||||
assert blur_filter_size in [3, 5]
|
||||
self.channels = channels
|
||||
self.blur_filter_size = blur_filter_size
|
||||
self.stride = stride
|
||||
|
||||
if blur_filter_size == 3:
|
||||
pad_size = [1] * 4
|
||||
blur_matrix = torch.Tensor([[1., 2., 1]]) / 4 # binomial kernel b2
|
||||
else:
|
||||
pad_size = [2] * 4
|
||||
blur_matrix = torch.Tensor([[1., 4., 6., 4., 1.]]) / 16 # binomial filter kernel b4
|
||||
|
||||
self.padding = nn.ReflectionPad2d(pad_size)
|
||||
blur_filter = blur_matrix * blur_matrix.T
|
||||
self.register_buffer('blur_filter', blur_filter[None, None, :, :].repeat((self.channels, 1, 1, 1)))
|
||||
|
||||
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: # type: ignore
|
||||
if not torch.is_tensor(input_tensor):
|
||||
raise TypeError("Input input type is not a torch.Tensor. Got {}"
|
||||
.format(type(input_tensor)))
|
||||
if not len(input_tensor.shape) == 4:
|
||||
raise ValueError("Invalid input shape, we expect BxCxHxW. Got: {}"
|
||||
.format(input_tensor.shape))
|
||||
# apply blur_filter on input
|
||||
return F.conv2d(self.padding(input_tensor), self.blur_filter, stride=self.stride, groups=input_tensor.shape[1])
|
||||
|
||||
|
||||
######################
|
||||
# functional interface
|
||||
######################
|
||||
|
||||
|
||||
'''def blur_pool2d() -> torch.Tensor:
|
||||
r"""Creates a module that computes pools and blurs and downsample a given
|
||||
feature map.
|
||||
See :class:`~kornia.contrib.MaxBlurPool2d` for details.
|
||||
"""
|
||||
return BlurPool2d(kernel_size, ceil_mode)(input)'''
|
Loading…
Reference in new issue