""" BlurPool layer inspired by - Kornia's Max_BlurPool2d - Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar` Hacked together by Chris Ha and Ross Wightman """ import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from .padding import get_padding class BlurPool2d(nn.Module): r"""Creates a module that computes blurs and downsample a given feature map. See :cite:`zhang2019shiftinvar` for more details. Corresponds to the Downsample class, which does blurring and subsampling Args: channels = Number of input channels blur_filter_size (int): binomial filter size for blurring. currently supports 3 (default) and 5. stride (int): downsampling filter stride Shape: Returns: torch.Tensor: the transformed tensor. Examples: """ def __init__(self, channels, blur_filter_size=3, stride=2) -> None: super(BlurPool2d, self).__init__() assert blur_filter_size > 1 self.channels = channels self.blur_filter_size = blur_filter_size self.stride = stride pad_size = [get_padding(blur_filter_size, stride, dilation=1)] * 4 self.padding = nn.ReflectionPad2d(pad_size) blur_matrix = (np.poly1d((0.5, 0.5)) ** (blur_filter_size - 1)).coeffs blur_filter = torch.Tensor(blur_matrix[:, None] * blur_matrix[None, :]) # FIXME figure a clean hack to prevent the filter from getting saved in weights, but still # plays nice with recursive module apply for fn like .cuda(), .type(), etc -RW self.register_buffer('blur_filter', blur_filter[None, None, :, :].repeat((self.channels, 1, 1, 1))) def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: # type: ignore if not torch.is_tensor(input_tensor): raise TypeError("Input input type is not a torch.Tensor. Got {}".format(type(input_tensor))) if not len(input_tensor.shape) == 4: raise ValueError("Invalid input shape, we expect BxCxHxW. Got: {}".format(input_tensor.shape)) # apply blur_filter on input return F.conv2d( self.padding(input_tensor), self.blur_filter.type(input_tensor.dtype), stride=self.stride, groups=input_tensor.shape[1])