|
|
|
""" Normalization layers and wrappers
|
|
|
|
"""
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
class GroupNorm(nn.GroupNorm):
|
|
|
|
def __init__(self, num_channels, num_groups=32, eps=1e-5, affine=True):
|
|
|
|
# NOTE num_channels is swapped to first arg for consistency in swapping norm layers with BN
|
|
|
|
super().__init__(num_groups, num_channels, eps=eps, affine=affine)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps)
|
|
|
|
|
|
|
|
|
|
|
|
class LayerNorm2d(nn.LayerNorm):
|
|
|
|
""" LayerNorm for channels of '2D' spatial BCHW tensors """
|
|
|
|
def __init__(self, num_channels):
|
|
|
|
super().__init__(num_channels)
|
|
|
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
return F.layer_norm(
|
|
|
|
x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2)
|