@ -36,6 +36,9 @@ default_cfgs = {
' botnet26t_256 ' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/botnet26t_c1_256-167a0e9f.pth ' ,
fixed_input_size = True , input_size = ( 3 , 256 , 256 ) , pool_size = ( 8 , 8 ) ) ,
' sebotnet33ts_256 ' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sebotnet33ts_a1h2_256-957e3c3e.pth ' ,
fixed_input_size = True , input_size = ( 3 , 256 , 256 ) , pool_size = ( 8 , 8 ) , crop_pct = 0.94 ) ,
' botnet50ts_256 ' : _cfg (
url = ' ' ,
fixed_input_size = True , input_size = ( 3 , 256 , 256 ) , pool_size = ( 8 , 8 ) ) ,
@ -51,7 +54,7 @@ default_cfgs = {
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sehalonet33ts_256-87e053f9.pth ' ,
input_size = ( 3 , 256 , 256 ) , pool_size = ( 8 , 8 ) , min_input_size = ( 3 , 256 , 256 ) , crop_pct = 0.94 ) ,
' halonet50ts ' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet50ts_a1h _256-c6d7ff15 .pth' ,
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet50ts_a1h 2_256-f3a3daee .pth' ,
input_size = ( 3 , 256 , 256 ) , pool_size = ( 8 , 8 ) , min_input_size = ( 3 , 256 , 256 ) , crop_pct = 0.94 ) ,
' eca_halonext26ts ' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_halonext26ts_c_256-06906299.pth ' ,
@ -97,6 +100,22 @@ model_cfgs = dict(
self_attn_layer = ' bottleneck ' ,
self_attn_kwargs = dict ( )
) ,
sebotnet33ts = ByoModelCfg (
blocks = (
ByoBlockCfg ( type = ' bottle ' , d = 2 , c = 256 , s = 1 , gs = 0 , br = 0.25 ) ,
interleave_blocks ( types = ( ' bottle ' , ' self_attn ' ) , every = [ 2 ] , d = 3 , c = 512 , s = 2 , gs = 0 , br = 0.25 ) ,
interleave_blocks ( types = ( ' bottle ' , ' self_attn ' ) , every = [ 2 ] , d = 3 , c = 1024 , s = 2 , gs = 0 , br = 0.25 ) ,
ByoBlockCfg ( ' self_attn ' , d = 2 , c = 1536 , s = 2 , gs = 0 , br = 0.333 ) ,
) ,
stem_chs = 64 ,
stem_type = ' tiered ' ,
stem_pool = ' ' ,
act_layer = ' silu ' ,
num_features = 1280 ,
attn_layer = ' se ' ,
self_attn_layer = ' bottleneck ' ,
self_attn_kwargs = dict ( )
) ,
botnet50ts = ByoModelCfg (
blocks = (
ByoBlockCfg ( type = ' bottle ' , d = 3 , c = 256 , s = 1 , gs = 0 , br = 0.25 ) ,
@ -322,6 +341,13 @@ def botnet26t_256(pretrained=False, **kwargs):
return _create_byoanet ( ' botnet26t_256 ' , ' botnet26t ' , pretrained = pretrained , * * kwargs )
@register_model
def sebotnet33ts_256 ( pretrained = False , * * kwargs ) :
""" Bottleneck Transformer w/ a ResNet33-t backbone, SE attn for non Halo blocks, SiLU,
"""
return _create_byoanet ( ' sebotnet33ts_256 ' , ' sebotnet33ts ' , pretrained = pretrained , * * kwargs )
@register_model
def botnet50ts_256 ( pretrained = False , * * kwargs ) :
""" Bottleneck Transformer w/ ResNet50-T backbone, silu act.